Thalassocnus
Thalassocnus evolved several marine adaptations over 4 million years, such as dense and heavy bones to counteract buoyancy, the internal nostrils migrating farther into the head to help with breathing while completely submerged, the snout becoming wider and more elongated to consume aquatic plants better, and the head angling farther and farther downwards to aid in bottom feeding. The long tail was probably used for diving and balance similar to the modern day beaver (Castor spp.) and platypus (Ornithorhynchus anatinus).
Thalassocnus probably walked across the seafloor and dug up food with its claws. They probably could not do high-powered swimming, relying on paddling if necessary. Early Thalassocnus were probably generalist grazers eating seaweed and seagrasses close to shore, whereas later species specialized on seagrasses farther off the coast. They were probably preyed upon by sharks and macroraptorial sperm whales such as Acrophyseter. Thalassocnus were found in formations with large marine mammal and shark assemblages.
Taxonomy
Type specimens
Thalassocnus were ground sloths that lived from the Late Miocene to the end of the Pliocene—Late Huayquerian to Early Uquian in the SALMA classification—and all five species were discovered in different horizons of the Pisco Formation in Peru. T antiquus was discovered in the Aguada de Lomas Horizon in 7 or 8 million year old strata; T. natans (the type species) from the Montemar Horizon lived around 6 million years ago (mya); T. littoralis from the Sud-Sacaco Horizon lived around 5 mya; T. carolomartini from the Sacaco Horizon lived between 3 and 4 mya; and T. yaucensis from the Yuaca Horizon lived 3 to 1.5 mya. Specimens were also found in the Bahía Inglesa Formation, the Coquimbo Formation, and the Horcón Formation in Chile. A total of three species has been identified with certainty in Chilean formations, T. carolomartini, T. natans, T. antiquus while the presence of T. yaucensis is judged likely.
In 1995, the genus Thalassocnus was formally described with the species T. natans, with a partial skeleton, MUSM 433, by paleontologists Christian de Muizon and H. Gregory McDonald. T. littoralis was described from a nearly complete skull, MUSM SAS 1615, in 2002. T. carolomartini from a skull, SMNK PAL 3814, and hands, SMNK PAL 3814, was also described in 2002, and the two T. carolomartini specimens may represent one individual. T. antiquus was described by MUSM 228 in 2003 comprising a skull, jaw, and most of the rest of the body, though the latter is badly damaged. T. yuacensis was described in 2004 from a nearly-complete skeleton, MUSM 1034, and skull, MUSM 37.
Etymology
The generic epithet Thalassocnus derives from the Greek word thalassa "sea" and Ocnus, an allegorical deity from Greek and Roman mythology that represents the wasting of time, or slothfulness.
The species name carolomartini is named in honor of Carlos Martin, the late owner of the Sacaco hacienda and finder of several bones in the Pisco Formation, including the holotype specimen; and yaucensis after the village Yauca which is near where the species was found.
Phylogeny
In 1968, taxonomist Robert Hoffstetter placed undescribed sloth remains into the family Megatheriidae, possibly belonging to the now-defunct subfamily Planopsinae, mainly based on similarities with the ankle bone and femur. Upon species description in 1995, they were moved into the subfamily Nothrotheriinae. In 2004, this was later elevated to family Nothrotheriidae, and the sloths were put into the new subfamily Thalassocninae. In 2017, the sloths were moved back to the family Megatheriidae. Thalassocninae may have diverged from Megatheriinae during the Friasian age of the Miocene around 16 mya. However, a 2018 analysis retains Thalassocninae within Nothrotheriidae. Given that the two families in question may be sisters, and that the position of Thalassocninae within either would likely be fairly basal, correct family placement may be difficult.
The five species seem to form one direct lineage (chronospecies), however, it is possible T. antiquus is not the ancestor of T. natans.
| |||||||||||||||||||||||||||||||||||||||
Phylogeny of Thalassocninae assuming placement in the family Megatheriidae |
Description
Size
Thalassocnus is the only aquatic xenarthran—a group that includes sloths, anteaters, and armadillos—though the ground sloth Eionaletherium from the Miocene of Venezuela may have adapted to nearshore life, as well as Ahytherium from the Pleistocene of Brazil. However, Thalassocnus may have also been adapted to a terrestrial lifestyle based on its record in Argentina. Thalassocnus, as time progressed, increased in size.
T. natans has the most complete skeleton preserved and measures from snout to tail 2.55 meters (8.4 ft). Based on a femur-to-body-length ratio, the T. littoralis specimen—probably a female—measured 2.1 meters (6.9 ft) in life, and the T. yuacensis specimen 3.3 meters (11 ft).
Skull
The later Thalassocnus species had enlarged premaxillae and thus had a more elongated snout. The lower jaw progressively elongated and became more spoon-shaped, possibly mimicking the function of the splayed incisor teeth in ruminants. The later species had stronger lips, indicated by the large size of the infraorbital foramen which supplies blood vessels, and, as modern-day grazers, probably had horny pads on the lips. Like in other grazers, the snout had a square shape as opposed to the triangular shape in browsers. The nostrils moved from the front of the snout to the top of the snout, similar to seals. In later species, to adapt to feeding underwater, the soft palate of the mouth separating the trachea from the esophagus was more developed, and the internal nostrils between the nasal cavity and the throat were farther inside the head. This also increased the size of the mouth. However, these adaptations also developed in some terrestrial mammals, and so could instead be related to chewing efficiency. The masseter muscle on the skull was probably the main muscle for biting down. The later species had a more powerful bite to better grasp seagrass. The pterygoid muscle in later species was larger to adapt to grinding rather than cutting while chewing. The latest species, T. carolomartini and T. yuacensis show some evidence of having a short trunk similar to tapirs and elephant seals.
Thalassocnus had a hypsodont dentition pattern with high tooth crowns and the tooth enamel extending beyond the gums. Thalassocnus lacked canine teeth, and had four upper and three lower molars on either side of the mouth. Similar to other sloths, the teeth had an outer coating of durodentine, a bonelike version of dentine, and had softer vasodentine inside, a form of dentine that allows blood flow. The teeth were prism-shaped with a circular cross section, and the teeth interlocked tightly while chewing in the later species. In earlier species, the chewing pattern sharpened their teeth. The earlier species had more rectangular teeth that had a similar build to the giant ground sloth Megatherium americanum, whereas the later species had squarer and larger teeth. From earlier species to later species, the teeth show a change of function from cutting food to grinding food.
Vertebrae
Thalassocnus had 7 neck vertebrae; 17 thoracic vertebrae, compared to the 18 in other megatheriid sloths; 3 lumbar vertebrae, like other ground sloths; and 24 tail vertebrae, as opposed to other ground sloths which have less than 20. The vertebral centra segments progressively became shorter in length, making the spine more stable, probably an adaptation for digging efficiency.
In later species, the spinous processes that jut upwards from the vertebrae are markedly taller in the thoracic vertebrae than the neck vertebrae, as opposed to other sloths where they are around the same height. The small neck vertebrae show they had weak neck muscles, as an aquatic creature does not need to hold its head up, and the neck probably faced downwards while at rest. However, the atlanto-occipital joint, which controls neck movement, was stronger than it is in other sloths, which was probably an adaptation for bottom feeding to keep the head in a fixed position. They also evolved a stiffer and more fused backbone. Like in whales, the head could align directly with the spine.
The spinous process of the first thoracic vertebra is nearly vertical, but, unlike other sloths, the other vertebrae incline towards the tail; inclination increases in later species, with T. littoralis and T. carolomartini having a 70° inclination as opposed to T. antiquus and T. natans with a 30° inclination. Inclination begins to decrease at the ninth thoracic vertebra. This inclination may have caused less-developed back muscles that would have been needed for high-powered swimming.
The structure of the tail vertebrae indicates strong musculature. It is similar to the beaver (Castor spp.) and platypus (Ornithorhynchus anatinus), which use their tails for balance and diving rather than propulsion while swimming. The length of the tail, proportionally longer than other ground sloths, was probably a diving adaptation similar to modern day cormorants (Phalacrocorax spp.) which use their long tails to provide downward lift to resist buoyancy.