Alnilam
Observation
It is the 29th-brightest star in the sky (the fourth brightest in Orion) and is a blue supergiant. Together with Mintaka and Alnitak, the three stars make up Orion's Belt, known by many names across many ancient cultures. Alnilam is the middle star.
Since 1943, the spectrum of this star has served as one of the stable anchor points by which other stars are classified, for the spectral class B0Ia. Although the spectrum shows variations, particular in the H-alpha absorption lines, this is considered typical for this type of luminous hot supergiant. It is also one of the 58 stars used in celestial navigation. It is at its highest point in the sky around midnight on December 15.
It is slightly variable from magnitude 1.64 to 1.74, with no clear period, and it is classified as an α Cygni variable. Its spectrum also varies, possibly due to unpredictable changes in mass loss from the surface.
Physical characteristics
Estimates of Alnilam's properties vary. Searle and colleagues, using CMFGEN code to analyse the spectrum in 2008, calculated a luminosity of 537,000 L☉, an effective temperature of 27,500 ± 100 K and a radius of 32.4 ± 0.75 R☉. Analysis of the spectra and age of the members of the Orion OB1 association yields a mass 34.6 times that of the Sun (40.8 M☉ on the main sequence) and an age of 5.7 million years. A more recent detailed analysis of Alnilam across multiple wavelength bands produced very high luminosity, radius, and mass estimates, assuming the distance of 606 parsecs suggested by the Hipparcos new reduction. Adopting the larger parallax from the original Hipparcos reduction gives a distance of 412 parsecs and physical parameters more consistent with earlier publications. The luminosity of 832,000 L☉ and the mass of 64.5 M☉ at 606 parsecs is the highest ever derived for this star. Using precalculated models, a 2020 study found smaller values for luminosity (420,000 L☉), radius (30.61 R☉), and mass (40 M☉). Another spectroscopic distance modulus of 7.79 imply a distance of 361 parsecs.
Alnilam's relatively simple spectrum has made it useful for studying the interstellar medium. Within the next million years, this star may turn into a Wolf-Rayet star and explode as a supernova. Alnilam's high mass means that due to high mass loss, it will not become a red supergiant star, and will likely leave behind a black hole instead of a neutron star. It is surrounded by a molecular cloud, NGC 1990, which it illuminates to make a reflection nebula. Its stellar winds may reach up to 2,000 km/s, causing it to lose mass about 20 million times more rapidly than the Sun.
Nomenclature and history
ε Orionis is the star's Bayer designation and 46 Orionis its Flamsteed designation.
The traditional name Alnilam derives from the Arabic النظام al-niẓām 'arrangement/string (of pearls)'. Related spellings are Alnihan and Alnitam: all three variants are evidently mistakes in transliteration or copy errors, the first perhaps due to confusion with النيلم al-nilam 'the sapphire'. In 2016, the International Astronomical Union organized a Working Group on Star Names (WGSN) to catalog and standardize proper names for stars. The WGSN's first bulletin of July 2016 included a table of the first two batches of names approved by the WGSN; which included Alnilam for this star. It is now so entered in the IAU Catalog of Star Names.
Orion's Belt
The three belt stars were collectively known by many names in many cultures. Arabic terms include Al Nijād ('the Belt'), Al Nasak ('the Line'), Al Alkāt ('the Golden Grains or Nuts') and, in modern Arabic, Al Mīzān al H•akk ('the Accurate Scale Beam'). In Chinese mythology, they were also known as the Weighing Beam.
In Chinese, 參宿 (Shēn Sù), meaning Three Stars (asterism), refers to an asterism consisting of Alnilam, Alnitak and Mintaka (Orion's Belt), with Betelgeuse, Bellatrix, Saiph and Rigel later added. Consequently, the Chinese name for Alnilam is 參宿二 (Shēn Sù èr, English: the Second Star of Three Stars). It is one of the western mansions of the White Tiger.
See also
Notes
- ^ Calculated, using a distance modulus of 7.79 in the following equation:
. This yields a value of 361 parsecs.
References
- ^ Kunitzsch, Paul; Smart, Tim (2006). A Dictionary of Modern star Names: A Short Guide to 254 Star Names and Their Derivations (2nd rev. ed.). Cambridge, Massachusetts: Sky Pub. ISBN 978-1-931559-44-7.
- ^ van Leeuwen, F. (November 2007). "Validation of the new Hipparcos reduction". Astronomy & Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. S2CID 18759600.
- ^ Ducati, J. R. (2002). "VizieR Online Data Catalog: Catalogue of Stellar Photometry in Johnson's 11-color system". CDS/ADC Collection of Electronic Catalogues. 2237. Bibcode:2002yCat.2237....0D.
- ^ Ruban, E. V.; Alekseeva, G. A.; Arkharov, A. A.; Hagen-Thorn, E. I.; Galkin, V. D.; Nikanorova, I. N.; Novikov, V. V.; Pakhomov, V. P.; Puzakova, T. Yu. (September 2006). "Spectrophotometric observations of variable stars". Astronomy Letters. 32 (9): 604–607. Bibcode:2006AstL...32..604R. doi:10.1134/S1063773706090052. S2CID 121747360.
- ^ Morgan, W. W.; Keenan, Philip C.; Kellman, Edith (1943). "An Atlas of Stellar Spectra" (PDF). Astrophysical Monographs. 152 (3849): 147. Bibcode:1943Natur.152..147.. doi:10.1038/152147a0. S2CID 4109100.
- ^ Gontcharov, G. A. (November 2006). "Pulkovo Compilation of Radial Velocities for 35 495 Hipparcos stars in a common system". Astronomy Letters. 32 (11): 759–771. arXiv:1606.08053. Bibcode:2006AstL...32..759G. doi:10.1134/S1063773706110065. S2CID 119231169.
- ^ Oplištilová, A.; Mayer, P.; Harmanec, P.; Brož, M.; Pigulski, A.; Božić, H.; Zasche, P.; Šlechta, M.; Pablo, H.; Kołaczek-Szymański, P. A.; Moffat, A. F. J.; Lovekin, C. C.; Wade, G. A.; Zwintz, K.; Popowicz, A.; Weiss, W. W. (2023). "Spectrum of the secondary component and new orbital elements of the massive triple star δ Ori A". Astronomy and Astrophysics. 672: A31. arXiv:2301.10290. Bibcode:2023A&A...672A..31O. doi:10.1051/0004-6361/202245272. S2CID 256226821.
- ^ Searle, S. C.; Prinja, R. K.; Massa, D.; Ryans, R. (2008). "Quantitative studies of the optical and UV spectra of Galactic early B supergiants. I. Fundamental parameters". Astronomy and Astrophysics. 481 (3): 777–97. arXiv:0801.4289. Bibcode:2008A&A...481..777S. doi:10.1051/0004-6361:20077125. S2CID 1552752.
- ^ Zsargó, J.; Fierro-Santillán, C. R.; Klapp, J.; Arrieta, A.; Arias, L.; Valencia, J. M.; Sigalotti, L. Di G.; Hareter, M.; Puebla, R. E. (2020-11-01), "Creating and using large grids of precalculated model atmospheres for a rapid analysis of stellar spectra", Astronomy and Astrophysics, 643: A88, arXiv:2009.10879, Bibcode:2020A&A...643A..88Z, doi:10.1051/0004-6361/202038066, ISSN 0004-6361
- ^ Puebla, R.E.; Hillier, D.J.; Zsargó, J.; Cohen, D.H.; Leutenegger, M.A. (2015). "X-ray, UV and optical analysis of supergiants: ϵ Ori". Monthly Notices of the Royal Astronomical Society. 456 (3): 2907–2936. arXiv:1511.09365. Bibcode:2016MNRAS.456.2907P. doi:10.1093/mnras/stv2783. S2CID 7887625.
- ^ "GCVS Query forms". www.sai.msu.su. Retrieved 2019-01-12.
- ^ Krtička, J.; Feldmeier, A. (September 2018). "Light variations due to the line-driven wind instability and wind blanketing in O stars" (PDF). Astronomy & Astrophysics. 617: A121. arXiv:1807.09407. Bibcode:2018A&A...617A.121K. doi:10.1051/0004-6361/201731614. S2CID 119388848. Retrieved 11 August 2022.
- ^ Voss, R.; Diehl, R.; Vink, J. S.; Hartmann, D. H. (2010). "Probing the evolving massive star population in Orion with kinematic and radioactive tracers". Astronomy and Astrophysics. 520: 10. arXiv:1005.3827. Bibcode:2010A&A...520A..51V. doi:10.1051/0004-6361/201014408. S2CID 38599952. A51.
- ^ Perryman, M. A. C.; Lindegren, L.; Kovalevsky, J.; Hoeg, E.; Bastian, U.; Bernacca, P. L.; Crézé, M.; Donati, F.; Grenon, M.; Grewing, M.; Van Leeuwen, F.; Van Der Marel, H.; Mignard, F.; Murray, C. A.; Le Poole, R. S.; Schrijver, H.; Turon, C.; Arenou, F.; Froeschlé, M.; Petersen, C. S. (1997). "The HIPPARCOS Catalogue". Astronomy and Astrophysics. 323: L49. Bibcode:1997A&A...323L..49P.
- ^ Humphreys, Roberta M.; Helmel, Greta; Jones, Terry J.; Gordon, Michael S. (2020-09-01). "Exploring the Mass-loss Histories of the Red Supergiants*". The Astronomical Journal. 160 (3): 145. arXiv:2008.01108. Bibcode:2020AJ....160..145H. doi:10.3847/1538-3881/abab15. ISSN 0004-6256.
- ^ Crowther, P. A.; Lennon, D. J.; Walborn, N. R. (January 2006). "Physical parameters and wind properties of galactic early B supergiants". Astronomy & Astrophysics. 446 (1): 279–293. arXiv:astro-ph/0509436. Bibcode:2006A&A...446..279C. doi:10.1051/0004-6361:20053685. S2CID 18815761.
- ^ Allen, Richard Hinckley (1936). Star-names and their meanings. pp. 314–315.
- ^ Knobel, E. B. (September 1909). "The name of epsilon Orionis". The Observatory. 32: 357. Bibcode:1909Obs....32..357K.
- ^ "IAU Working Group on Star Names (WGSN)". Retrieved 22 May 2016.
- ^ "Bulletin of the IAU Working Group on Star Names, No. 1" (PDF). Retrieved 28 July 2016.
- ^ "IAU Catalog of Star Names". Retrieved 28 July 2016.
- ^ (in Chinese) 中國星座神話, written by 陳久金. Published by 台灣書房出版有限公司, 2005, ISBN 978-986-7332-25-7.
- ^ (in Chinese) AEEA (Activities of Exhibition and Education in Astronomy) 天文教育資訊網 2006 年 5 月 25 日 Archived 2011-07-16 at the Wayback Machine