Loading
  • 21 Aug, 2019

  • By, Wikipedia

Chajnantor

Llano de Chajnantor Observatory is the name for a group of astronomical observatories located at an altitude of over 4,800 m (15,700 ft) in the Atacama Desert of northern Chile. The site is in the Antofagasta Region approximately 50 kilometres (31 mi) east of the town of San Pedro de Atacama. The exceptionally arid climate of the area is inhospitable to humans, but creates an excellent location for millimeter, submillimeter, and mid-infrared astronomy. This is because water vapour absorbs and attenuates submillimetre radiation. Llano de Chajnantor is home to the largest and most expensive astronomical telescope project in the world, the Atacama Large Millimeter Array (ALMA). Llano de Chajnantor and the surrounding area has been designated as the Chajnantor Science Reserve (Spanish: Reserva Científica de Chajnantor) by the government of Chile.

Site description

The Llano de Chajnantor is located on the western side of the Puna de Atacama, which is another name for the southern part of the Altiplano. The main ridge of the Andes is over 200 kilometres (120 mi) to the east, well into Argentina. The Salar de Atacama basin borders the Puna de Atacama to the west, which in turn is bordered by the Cordillera Domeyko. The western side of the Puna de Atacama is dotted with the volcanoes of the Central Volcanic Zone of the Andean Volcanic Belt. The Llano de Chajnantor site itself is bounded by volcanic peaks of the Purico Complex, which have been active in the Holocene but have not erupted in historic times. Cerro Chajnantor is to the north, Cerro El Chascón to the east, and smaller peaks to the south and west. The Pampa la Bola lies to the northeast, north of Cerro El Chascón and east of Cerro Chajnantor. Llano de Chajnantor has an average elevation of 5,000 m (16,000 ft), while Pampa la Bola averages 4,800 m (15,700 ft). The thin atmosphere makes work difficult for humans, so much of the activity for ALMA will be conducted at a base camp in the Salar de Atacama basin at approximately 2,900 m (9,500 ft) in elevation.

360-degree panorama of the Chajnantor plateau

Rainfall at the ALMA site averages 100 mm (3.9 in) annually. The dry climate of Llano de Chajnantor is due to three factors: the rain shadows created by the Andes and the Chilean Coastal Range, the inversion created by the Humboldt Current off the coast of Chile, and dry air descending between the Hadley cell and the Ferrel cell, which forms the South Pacific High. While the site is generally viewed as being in the Atacama Desert, in terms of ecoregions it is in the Central Andean dry puna. Llano de Chajnantor is at the same latitude as deserts in southern Africa and central Australia.

Telescopes

Telescopes on Llano de Chajnantor

The Atacama Large Millimeter Array (ALMA)
The Atacama Pathfinder Experiment (APEX), a new-technology 12-m telescope in operation since 2005 on Llano de Chajnantor

Telescopes on Pampa la Bola

Telescopes on adjacent peaks

APEX Under the Moon. Starry night on the Chajnantor Plateau in the Chilean Andes
  • The University of Tokyo Atacama Observatory (TAO) is a 6.5 m (21 ft) optical and infrared telescope under construction (as of 2019) on Cerro Chajnantor, which is immediately north of Llano de Chajnantor. A test facility, the miniTAO, with a 1.0 m (3.3 ft) telescope was completed in 2009. It is currently the highest permanent astronomical observatory in the world.
  • The Cerro Chajnantor Atacama Telescope (CCAT) is a proposed 25 m (82 ft) submillimetre radio telescope which will be located on Cerro Chajnantor near the TAO. Originally called the Cornell Caltech Atacama Telescope earlier in the development process, it is now referred to on the project's website by the CCAT acronym. Completion was at one time expected in 2020. The CCAT project has had trouble finding funding, and construction has not began as of 2019. The scientific collaboration has decided to build a pathfinder facility, CCAT-prime (CCAT-p), before pursuing the full CCAT. CCAT-p will be a similar type of telescope at CCAT, but much smaller, with 6 metre diameter. CCAT-p started construction in 2017 (fabrication started in late 2018) and first light is expected 2021.
  • The Huan Tran Telescope (HTT) is part of a project to measure the polarization of the cosmic microwave background radiation. It is a 3.5 m (11 ft) Gregorian telescope. Attached to the telescope is the POLARBEAR experiment, which is an array of bolometers cooled to less than 1 K (−458 °F). HTT was first installed for testing at the CARMA site in 2010. It was moved to a location on Cerro Toco near the ACT in 2011 and saw first light in January 2012. It was developed by a consortium led by the University of California, Berkeley.
  • The Simons Observatory is a microwave observatory consisting of a 6-m Large Aperture Telescope (LAT) and three 0.5 m Small Aperture Telescopes (SATs) with a total of 60,000 transition-edge sensor bolometers. It will conduct a wide survey of the cosmic microwave background and its linear polarization with arcminute resolution and a sensitivity an order of magnitude higher than the Planck space telescope. The SATs began observation April 2024, while the LAT's first light is expected early 2025.

Former telescopes

See also

References

  1. ^ Bustos, R.; Rubio, M.; Otárola, A.; Nagar, N. (2014). "Parque Astronómico de Atacama: An Ideal Site for Millimeter, Submillimeter, and Mid-Infrared Astronomy". Publications of the Astronomical Society of the Pacific. 126 (946): 1126. arXiv:1410.2451. Bibcode:2014PASP..126.1126B. doi:10.1086/679330. S2CID 118539242.
  2. ^ "Topographical Map of CONICYT Science Preserve" (PDF). National Radio Astronomy Observatory. Retrieved 26 January 2012.
  3. ^ "Purico Complex". Global Volcanism Program. Smithsonian Institution. Retrieved 26 January 2012.
  4. ^ "The best observing sites on Earth". Atacama Large Millimeter/submillimeter Array. Archived from the original on 14 April 2011. Retrieved 26 January 2012.
  5. ^ Garreaud, René D.; Molina, Alejandra; Farias, Marcelo (2010). "Andean uplift, ocean cooling and Atacama hyperaridity: A climate modeling perspective". Earth and Planetary Science Letters. 292 (1–2): 39–50. Bibcode:2010E&PSL.292...39G. doi:10.1016/j.epsl.2010.01.017. hdl:10533/141752.
  6. ^ Wootten, A.; Thompson, A.R. (2009). "The Atacama Large Millimeter/Submillimeter Array". Proceedings of the IEEE. 97 (8): 1463. arXiv:0904.3739. Bibcode:2009IEEEP..97.1463W. doi:10.1109/JPROC.2009.2020572. S2CID 7772135.
  7. ^ Güsten, R.; Nyman, L. Å.; Schilke, P.; Menten, K.; Cesarsky, C.; Booth, R. (2006). "The Atacama Pathfinder EXperiment (APEX) – a new submillimeter facility for southern skies –". Astronomy and Astrophysics. 454 (2): L13. Bibcode:2006A&A...454L..13G. doi:10.1051/0004-6361:20065420.
  8. ^ Kohno, K. (2005). "The Atacama Submillimeter Telescope Experiment". The Cool Universe: Observing Cosmic Dawn. 344: 242. Bibcode:2005ASPC..344..242K.
  9. ^ Kawamura, A.; Mizuno, N.; Yonekura, Y.; Onishi, T.; Mizuno, A.; Fukui, Y. (2005). "NANTEN2: A Submillimeter Telescope for Large Scale Surveys at Atacama". Astrochemistry: Recent Successes and Current Challenges. 235: 275P. Bibcode:2005IAUS..231P.275K.
  10. ^ "APEX Under the Moon". ESO Picture of the Week. Retrieved 12 February 2013.
  11. ^ Minezaki, Takeo; Kato, Daisuke; Sako, Shigeyuki; Konishi, Masahiro; Koshida, Shintaro; Mitani, Natsuko; Aoki, Tsutomu; Doi, Mamoru; Handa, Toshihiro (2010). "The University of Tokyo Atacama 1.0-m Telescope". In Stepp, Larry M; Gilmozzi, Roberto; Hall, Helen J (eds.). Ground-based and Airborne Telescopes III. Proceedings of SPIE. Vol. 7733. p. 773356. doi:10.1117/12.856694. S2CID 173187679.
  12. ^ Radford, S. J. E.; Giovanelli, R.; Sebring, T. A.; Zmuidzinas, J. (2009). "Ccat". Submillimeter Astrophysics and Technology: A Symposium Honoring Thomas G. Phillips ASP Conference Series. 417: 113. Bibcode:2009ASPC..417..113R.
  13. ^ "New Telescopes Search for Origin of Universe" (Press release). Simons Foundation. 9 January 2014.
  14. ^ Keating, B.; Moyerman, S.; Boettger, D.; Edwards, J.; Fuller, G.; Matsuda, F.; Miller, N.; Paar, H.; Rebeiz, G.; et al. (2011). "Ultra High Energy Cosmology with POLARBEAR". 1110: 2101. arXiv:1110.2101. Bibcode:2011arXiv1110.2101K. {{cite journal}}: Cite journal requires |journal= (help)
  15. ^ "First Light in Chile!". University of California Berkeley Department of Physics. Retrieved 5 March 2012.
  16. ^ Bischoff, C.; Brizius, A.; Buder, I.; Chinone, Y.; Cleary, K.; Dumoulin, R. N.; Kusaka, A.; Monsalve, R.; et al. (2011). "FIRST SEASON QUIET OBSERVATIONS: MEASUREMENTS OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA AT 43 GHz IN THE MULTIPOLE RANGE 25 ⩽ $\ell$ ⩽ 475". The Astrophysical Journal. 741 (2): 111. arXiv:1012.3191. Bibcode:2011ApJ...741..111Q. doi:10.1088/0004-637X/741/2/111. S2CID 15944758.
  17. ^ Taylor, Angela C.; Jones, Michael E.; Allison, James R.; Angelakis, Emmanouil; Bond, J. Richard; Bronfman, Leonardo; Bustos, Ricardo; Davis, Richard J.; et al. (2011). "The Cosmic Background Imager 2". Monthly Notices of the Royal Astronomical Society. 418 (4): 2720. arXiv:1108.3950. Bibcode:2011MNRAS.418.2720T. doi:10.1111/j.1365-2966.2011.19661.x. S2CID 2703946.
  18. ^ Fowler, J. W.; Doriese, W. B.; Marriage, T. A.; Tran, H. T.; Aboobaker, A. M.; Dumont, C.; Halpern, M.; Kermish, Z. D.; Loh, Y.-S.; Page, L. A.; Staggs, S. T.; Wesley, D. H. (2005). "Cosmic Microwave Background Observations with a Compact Heterogeneous 150 GHz Interferometer in Chile". The Astrophysical Journal Supplement Series. 156 (1): 1–11. arXiv:astro-ph/0403137. Bibcode:2005ApJS..156....1F. doi:10.1086/426393. S2CID 10422803.
  19. ^ Miller, A.; Beach, J.; Bradley, S.; Caldwell, R.; Chapman, H.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; et al. (2002). "The QMAP and MAT/TOCO Experiments for Measuring Anisotropy in the Cosmic Microwave Background". The Astrophysical Journal Supplement Series. 140 (2): 115–142. arXiv:astro-ph/0108030. Bibcode:2002ApJS..140..115M. doi:10.1086/339686. S2CID 18246763.
  20. ^ Fowler, J. W.; Niemack, M. D.; Dicker, S. R.; Aboobaker, A. M.; Ade, P. A. R.; Battistelli, E. S.; Devlin, M. J.; Fisher, R. P.; et al. (2007). "Optical design of the Atacama Cosmology Telescope and the Millimeter Bolometric Array Camera". Applied Optics. 46 (17): 3444–54. arXiv:astro-ph/0701020. Bibcode:2007ApOpt..46.3444F. doi:10.1364/AO.46.003444. PMID 17514303. S2CID 10833374.