Citlaltépetl
Toponymy
Pico de Orizaba overlooks the valley and city of Orizaba, from which it gets its Spanish name, i.e., Orizaba's peak. During the colonial era, the volcano was also known as Cerro de San Andrés due to the nearby settlement of San Andrés Chalchicomula at its base.
Its Náhuatl name, Citlaltépetl, comes from citlalli (star) and tepētl (mountain) and thus means "Star Mountain". This name is thought to be based on the fact that the snow-covered peak can be seen year round for hundreds of kilometers throughout the region. This name is not, however, used by Náhuatl speakers of the Orizaba area, who instead call it Istaktepetl (Iztactépetl in the traditional orthography for Classical Nahuatl), meaning 'White Mountain'.
A third name, Poyauhtecatl, which means "the one that colours or illuminates", has also been recorded. This name was given by the Tlaxcaltecs in memory of their lost country.
Topography
The peak of Citlaltépetl rises dramatically to an elevation of 5,636 m (18,491 ft) above sea level; it has a topographic prominence of 4,922 m (16,148 ft). Regionally dominant, Pico de Orizaba is the highest peak in Mexico and the highest volcano in North America; it is also the third highest peak in North America after Denali and Mount Logan. Orizaba is ranked 7th in the world in topographic prominence. It is the second most prominent volcanic peak in the world after Africa's Mount Kilimanjaro, and the volcano is ranked 16th in the world for topographic isolation. About 110 km (68 mi) to the west of the port of Veracruz, its peak is visible to ships approaching the port in the Gulf of Mexico, and at dawn rays of sunlight strike the Pico while Veracruz still lies in shadow. The topography of Pico de Orizaba is asymmetrical from the center of the crater; the eastern face is the steepest side of the volcano and the northwestern face the most gradual side. The gradual slopes of the northwestern face of the volcano allow for the presence of large glaciers and provide the most traveled route for hikers traveling to the summit.
Glaciers
Pico de Orizaba is one of only three volcanoes in México that continue to support glaciers and is home to the largest glacier in Mexico, Gran Glaciar Norte. Orizaba has nine known glaciers: Gran Glaciar Norte, Lengua del Chichimeco, Jamapa, Toro, Glaciar de la Barba, Noroccidental, Occidental, Suroccidental, and Oriental. The equilibrium line altitude (ELA) is not known for Orizaba. Snow on the south and southeast sides of the volcano melts quickly because of solar radiation, but lower temperatures on the northwest and north sides allow for glaciers. The insolation angle and wind redeposition on the northwest and north sides allow for constant accumulation of snow providing a source for the outlet glaciers. On the north side of Orizaba, the Gran Glaciar Norte fills the elongated highland basin and is the source for seven outlet glaciers. The main glacier extends 3.5 km (2.2 mi) north of the crater rim, has a surface area of about 9.08 km (3.51 sq mi) descending from 5,650 m (18,540 ft) to about 5,000 m (16,000 ft). It has a slightly irregular and stepped profile that is caused in part by the configuration of the bedrock. Most crevasses show an ice thickness of approximately 50 m (160 ft).
Below the 5,000 m (16,000 ft) in elevation on the north side of the volcano, the outlet glaciers Lengua del Chichimeco and Jamapa extend north and northwest another 1.5 km (0.93 mi) and 2 km (1.2 mi), respectively. The terminal lobe of Lengua del Chichimeco at 4,740 m (15,550 ft), having a gradient of only 140 m/km (740 ft/mi), is a low, broad ice fan that has a convex-upward profile, a front typical of almost all Mexican glaciers. The most distinct glacier is Glaciar de Jamapa, which leaves Gran Glaciar Norte at about 4,975 m (16,322 ft) and, after 2 km (1.2 mi) with a gradient of 145 m/km (770 ft/mi), divides into two small tongues that end at 4,650 m (15,260 ft) and 4,640 m (15,220 ft). Both tongues terminate in broad convex-upward ice fans thinning along their edges. The retreat of these tongues prior to 1994 produced much erosion downstream and buried their edges by ablation rock debris.
The west side of Gran Glaciar Norte generates five outlet glaciers. From north to south, the first two, Glaciar del Toro and Glaciar de la Barba, are hanging cliff or icefall glaciers, reaching the tops of giant lava steps at 4,930 m (16,170 ft) and 5,090 m (16,700 ft), respectively. They then descend 200 to 300 m (660 to 980 ft) farther down into the heads of stream valleys as huge ice blocks but are not regenerated there. About 1 km (0.62 mi), Glaciar Noroccidental, a small outlet glacier 300 m (980 ft) long, drains away from the side of Gran Glaciar Norte at about 5,100 m (16,700 ft) and draws down the ice surface a few tens of meters over a distance of 500 m (1,600 ft), descending to 4,920 m (16,140 ft) with a gradient of 255 m/km (1,350 ft/mi). Another 1 km (0.62 mi) still farther south, Glaciar Occidental breaks away from Gran Glaciar Norte west of the summit crater at about 5,175 m (16,978 ft) as a steep, 1 km (0.62 mi) long glacier having a gradient of 270 m/km (1,400 ft/mi) that ends at 4,930 m (16,170 ft). From the southwest corner of the mountain, another outlet glacier, Glaciar Suroccidental, 1.6 km (0.99 mi) long, flows from Gran Glaciar Norte at 5,250 m (17,220 ft) with a gradient of 200 m/km (1,100 ft/mi), which also ends at 4,930 m (16,170 ft) in a long smooth surface.
East of the summit cone, a separate steep niche glacier, Glaciar Oriental, 1.2 km (0.75 mi) long and having a gradient of 440 m/km (2,300 ft/mi), flows down the mountainside from about 5,600 to 5,070 m (18,370 to 16,630 ft); it contains many crevasses and seracs and is the most difficult glacier to climb. Glacier Oriental had a surface area of about 420,000 m (4,500,000 sq ft) in 1958, which makes the total area of glaciers and firn field on Citlaltépetl about 9.5 km (3.7 sq mi). No earlier historical record of glacier tongue activity (advance or recession) is known for Citlaltépetl's glaciers. Although the Gran Glaciar Norte ice cap is covered with snow, it is possible to see the seven outlet glaciers on the irregular west margin of the ice cap, especially Glaciar de Jamapa and Glaciar Occidental.