Computer Mice
The first public demonstration of a mouse controlling a computer system was done by Doug Engelbart in 1968 as part of the Mother of All Demos. Mice originally used two separate wheels to directly track movement across a surface: one in the x-dimension and one in the Y. Later, the standard design shifted to use a ball rolling on a surface to detect motion, in turn connected to internal rollers. Most modern mice use optical movement detection with no moving parts. Though originally all mice were connected to a computer by a cable, many modern mice are cordless, relying on short-range radio communication with the connected system.
In addition to moving a cursor, computer mice have one or more buttons to allow operations such as the selection of a menu item on a display. Mice often also feature other elements, such as touch surfaces and scroll wheels, which enable additional control and dimensional input.
Etymology
The earliest known written use of the term mouse or mice in reference to a computer pointing device is in Bill English's July 1965 publication, "Computer-Aided Display Control". This likely originated from its resemblance to the shape and size of a mouse, with the cord resembling its tail. The popularity of wireless mice without cords makes the resemblance less obvious.
According to Roger Bates, a hardware designer under English, the term also came about because the cursor on the screen was, for an unknown reason, referred to as "CAT" and was seen by the team as if it would be chasing the new desktop device.
The plural for the small rodent is always "mice" in modern usage. The plural for a computer mouse is either "mice" or "mouses" according to most dictionaries, with "mice" being more common. The first recorded plural usage is "mice"; the online Oxford Dictionaries cites a 1984 use, and earlier uses include J. C. R. Licklider's "The Computer as a Communication Device" of 1968.
History
Stationary trackballs
The trackball, a related pointing device, was invented in 1946 by Ralph Benjamin as part of a post-World War II-era fire-control radar plotting system called the Comprehensive Display System (CDS). Benjamin was then working for the British Royal Navy Scientific Service. Benjamin's project used analog computers to calculate the future position of target aircraft based on several initial input points provided by a user with a joystick. Benjamin felt that a more elegant input device was needed and invented what they called a "roller ball" for this purpose.
The device was patented in 1947, but only a prototype using a metal ball rolling on two rubber-coated wheels was ever built, and the device was kept as a military secret.
Another early trackball was built by Kenyon Taylor, a British electrical engineer working in collaboration with Tom Cranston and Fred Longstaff. Taylor was part of the original Ferranti Canada, working on the Royal Canadian Navy's DATAR (Digital Automated Tracking and Resolving) system in 1952.
DATAR was similar in concept to Benjamin's display. The trackball used four disks to pick up motion, two each for the X and Y directions. Several rollers provided mechanical support. When the ball was rolled, the pickup discs spun and contacts on their outer rim made periodic contact with wires, producing pulses of output with each movement of the ball. By counting the pulses, the physical movement of the ball could be determined. A digital computer calculated the tracks and sent the resulting data to other ships in a task force using pulse-code modulation radio signals. This trackball used a standard Canadian five-pin bowling ball. It was not patented, since it was a secret military project.
Engelbart's first "mouse"
Douglas Engelbart of the Stanford Research Institute (now SRI International) has been credited in published books by Thierry Bardini, Paul Ceruzzi, Howard Rheingold, and several others as the inventor of the computer mouse. Engelbart was also recognized as such in various obituary titles after his death in July 2013.
By 1963, Engelbart had already established a research lab at SRI, the Augmentation Research Center (ARC), to pursue his objective of developing both hardware and software computer technology to "augment" human intelligence. That November, while attending a conference on computer graphics in Reno, Nevada, Engelbart began to ponder how to adapt the underlying principles of the planimeter to inputting X- and Y-coordinate data. On 14 November 1963, he first recorded his thoughts in his personal notebook about something he initially called a "bug", which is a "3-point" form could have a "drop point and 2 orthogonal wheels". He wrote that the "bug" would be "easier" and "more natural" to use, and unlike a stylus, it would stay still when let go, which meant it would be "much better for coordination with the keyboard".
In 1964, Bill English joined ARC, where he helped Engelbart build the first mouse prototype. They christened the device the mouse as early models had a cord attached to the rear part of the device which looked like a tail, and in turn, resembled the common mouse. According to Roger Bates, a hardware designer under English, another reason for choosing this name was because the cursor on the screen was also referred to as "CAT" at this time.
As noted above, this "mouse" was first mentioned in print in a July 1965 report, on which English was the lead author. On 9 December 1968, Engelbart publicly demonstrated the mouse at what would come to be known as The Mother of All Demos. Engelbart never received any royalties for it, as his employer SRI held the patent, which expired before the mouse became widely used in personal computers. In any event, the invention of the mouse was just a small part of Engelbart's much larger project of augmenting human intellect.
Several other experimental pointing-devices developed for Engelbart's oN-Line System (NLS) exploited different body movements – for example, head-mounted devices attached to the chin or nose – but ultimately the mouse won out because of its speed and convenience. The first mouse, a bulky device (pictured) used two potentiometers perpendicular to each other and connected to wheels: the rotation of each wheel translated into motion along one axis. At the time of the "Mother of All Demos", Engelbart's group had been using their second-generation, 3-button mouse for about a year.
First rolling-ball mouse
On 2 October 1968, three years after Engelbart's prototype but more than two months before his public demo, a mouse device named Rollkugelsteuerung (German for "Trackball control") was shown in a sales brochure by the German company AEG-Telefunken as an optional input device for the SIG 100 vector graphics terminal, part of the system around their process computer TR 86 and the TR 440 main frame. Based on an even earlier trackball device, the mouse device had been developed by the company in 1966 in what had been a parallel and independent discovery. As the name suggests and unlike Engelbart's mouse, the Telefunken model already had a ball (diameter 40 mm, weight 40 g) and two mechanical 4-bit rotational position transducers with Gray code-like states, allowing easy movement in any direction. The bits remained stable for at least two successive states to relax debouncing requirements. This arrangement was chosen so that the data could also be transmitted to the TR 86 front-end process computer and over longer distance telex lines with c. 50 baud. Weighing 465 grams (16.4 oz), the device with a total height of about 7 cm (2.8 in) came in a c. 12 cm (4.7 in) diameter hemispherical injection-molded thermoplastic casing featuring one central push button.
As noted above, the device was based on an earlier trackball-like device (also named Rollkugel) that was embedded into radar flight control desks. This trackball had been originally developed by a team led by Rainer Mallebrein at Telefunken Konstanz for the German Bundesanstalt für Flugsicherung (Federal Air Traffic Control). It was part of the corresponding workstation system SAP 300 and the terminal SIG 3001, which had been designed and developed since 1963. Development for the TR 440 main frame began in 1965. This led to the development of the TR 86 process computer system with its SIG 100-86 terminal. Inspired by a discussion with a university customer, Mallebrein came up with the idea of "reversing" the existing Rollkugel trackball into a moveable mouse-like device in 1966, so that customers did not have to be bothered with mounting holes for the earlier trackball device. The device was finished in early 1968, and together with light pens and trackballs, it was commercially offered as an optional input device for their system starting later that year. Not all customers opted to buy the device, which added costs of DM 1,500 per piece to the already up to 20-million DM deal for the main frame, of which only a total of 46 systems were sold or leased. They were installed at more than 20 German universities including RWTH Aachen, Technische Universität Berlin, University of Stuttgart and Konstanz. Several Rollkugel mice installed at the Leibniz Supercomputing Centre in Munich in 1972 are well preserved in a museum, two others survived in a museum at Stuttgart University, two in Hamburg, the one from Aachen at the Computer History Museum in the US, and yet another sample was recently donated to the Heinz Nixdorf MuseumsForum (HNF) in Paderborn. Anecdotal reports claim that Telefunken's attempt to patent the device was rejected by the German Patent Office due to lack of inventiveness. For the air traffic control system, the Mallebrein team had already developed a precursor to touch screens in form of an ultrasonic-curtain-based pointing device in front of the display. In 1970, they developed a device named "Touchinput-Einrichtung" ("touch input device") based on a conductively coated glass screen.
First mice on personal computers and workstations
The Xerox Alto was one of the first computers designed for individual use in 1973 and is regarded as the first modern computer to use a mouse. Alan Kay designed the 16-by-16 mouse cursor icon with its left edge vertical and right edge 45-degrees so it displays well on the bitmap.Inspired by PARC's Alto, the Lilith, a computer which had been developed by a team around Niklaus Wirth at ETH Zürich between 1978 and 1980, provided a mouse as well. The third marketed version of an integrated mouse shipped as a part of a computer and intended for personal computer navigation came with the Xerox 8010 Star in 1981.
By 1982, the Xerox 8010 was probably the best-known computer with a mouse. The Sun-1 also came with a mouse, and the forthcoming Apple Lisa was rumored to use one, but the peripheral remained obscure; Jack Hawley of The Mouse House reported that one buyer for a large organization believed at first that his company sold lab mice. Hawley, who manufactured mice for Xerox, stated that "Practically, I have the market all to myself right now"; a Hawley mouse cost $415. In 1982, Logitech introduced the P4 Mouse at the Comdex trade show in Las Vegas, its first hardware mouse. That same year Microsoft made the decision to make the MS-DOS program Microsoft Word mouse-compatible, and developed the first PC-compatible mouse. The Microsoft Mouse shipped in 1983, thus beginning the Microsoft Hardware division of the company. However, the mouse remained relatively obscure until the appearance of the Macintosh 128K (which included an updated version of the single-button Lisa Mouse) in 1984, and of the Amiga 1000 and the Atari ST in 1985.
Operation
A mouse typically controls the motion of a pointer in two dimensions in a graphical user interface (GUI). The mouse turns movements of the hand backward and forward, left and right into equivalent electronic signals that in turn are used to move the pointer.
The relative movements of the mouse on the surface are applied to the position of the pointer on the screen, which signals the point where actions of the user take place, so hand movements are replicated by the pointer. Clicking or pointing (stopping movement while the cursor is within the bounds of an area) can select files, programs or actions from a list of names, or (in graphical interfaces) through small images called "icons" and other elements. For example, a text file might be represented by a picture of a paper notebook and clicking while the cursor points at this icon might cause a text editing program to open the file in a window.
Different ways of operating the mouse cause specific things to happen in the GUI:
- Point: stop the motion of the pointer while it is inside the boundaries of what the user wants to interact with. This act of pointing is what the "pointer" and "pointing device" are named after. In web design lingo, pointing is referred to as "hovering". This usage spread to web programming and Android programming, and is now found in many contexts.
- Click: pressing and releasing a button.
- (left) Single-click: clicking the main button.
- (left) Double-click: clicking the button two times in quick succession counts as a different gesture than two separate single clicks.
- (left) Triple-click: clicking the button three times in quick succession counts as a different gesture than three separate single clicks. Triple clicks are far less common in traditional navigation.
- Right-click: clicking the secondary button. In modern applications, this frequently opens a context menu.
- Middle-click: clicking the tertiary button. In most cases, this is also the scroll wheel.
- Clicking the fourth button.
- Clicking the fifth button.
- The USB standard defines up to 65535 distinct buttons for mice and other such devices, although in practice buttons above 3 are rarely implemented.
- Drag: pressing and holding a button, and moving the mouse before releasing the button. This is frequently used to move or copy files or other objects via drag and drop; other uses include selecting text and drawing in graphics applications.
- Mouse button chording or chord clicking:
- Clicking with more than one button simultaneously.
- Clicking while simultaneously typing a letter on the keyboard.
- Clicking and rolling the mouse wheel simultaneously.
- Clicking while holding down a modifier key.
- Moving the pointer a long distance: When a practical limit of mouse movement is reached, one lifts up the mouse, brings it to the opposite edge of the working area while it is held above the surface, and then lowers it back onto the working surface. This is often not necessary, because acceleration software detects fast movement, and moves the pointer significantly faster in proportion than for slow mouse motion.
- Multi-touch: this method is similar to a multi-touch touchpad on a laptop with support for tap input for multiple fingers, the most famous example being the Apple Magic Mouse.
Gestures
Gestural interfaces have become an integral part of modern computing, allowing users to interact with their devices in a more intuitive and natural way. In addition to traditional pointing-and-clicking actions, users can now employ gestural inputs to issue commands or perform specific actions. These stylized motions of the mouse cursor, known as "gestures", have the potential to enhance user experience and streamline workflow.
To illustrate the concept of gestural interfaces, let's consider a drawing program as an example. In this scenario, a user can employ a gesture to delete a shape on the canvas. By rapidly moving the mouse cursor in an "x" motion over the shape, the user can trigger the command to delete the selected shape. This gesture-based interaction enables users to perform actions quickly and efficiently without relying solely on traditional input methods.
While gestural interfaces offer a more immersive and interactive user experience, they also present challenges. One of the primary difficulties lies in the requirement of finer motor control from users. Gestures demand precise movements, which can be more challenging for individuals with limited dexterity or those who are new to this mode of interaction.
However, despite these challenges, gestural interfaces have gained popularity due to their ability to simplify complex tasks and improve efficiency. Several gestural conventions have become widely adopted, making them more accessible to users. One such convention is the drag and drop gesture, which has become pervasive across various applications and platforms.
The drag and drop gesture is a fundamental gestural convention that enables users to manipulate objects on the screen seamlessly. It involves a series of actions performed by the user:
- Pressing the mouse button while the cursor hovers over an interface object.
- Moving the cursor to a different location while holding the button down.
- Releasing the mouse button to complete the action.
This gesture allows users to transfer or rearrange objects effortlessly. For instance, a user can drag and drop a picture representing a file onto an image of a trash can, indicating the intention to delete the file. This intuitive and visual approach to interaction has become synonymous with organizing digital content and simplifying file management tasks.
In addition to the drag and drop gesture, several other semantic gestures have emerged as standard conventions within the gestural interface paradigm. These gestures serve specific purposes and contribute to a more intuitive user experience. Some of the notable semantic gestures include:
- Crossing-based goal: This gesture involves crossing a specific boundary or threshold on the screen to trigger an action or complete a task. For example, swiping across the screen to unlock a device or confirm a selection.
- Menu traversal: Menu traversal gestures facilitate navigation through hierarchical menus or options. Users can perform gestures such as swiping or scrolling to explore different menu levels or activate specific commands.
- Pointing: Pointing gestures involve positioning the mouse cursor over an object or element to interact with it. This fundamental gesture enables users to select, click, or access contextual menus.
- Mouseover (pointing or hovering): Mouseover gestures occur when the cursor is positioned over an object without clicking. This action often triggers a visual change or displays additional information about the object, providing users with real-time feedback.
These standard semantic gestures, along with the drag and drop convention, form the building blocks of gestural interfaces, allowing users to interact with digital content using intuitive and natural movements.
Specific uses
At the end of 20th century, digitizer mice (puck) with magnifying glass was used with AutoCAD for the digitizations of blueprints.
Other uses of the mouse's input occur commonly in special application domains. In interactive three-dimensional graphics, the mouse's motion often translates directly into changes in the virtual objects' or camera's orientation. For example, in the first-person shooter genre of games (see below), players usually employ the mouse to control the direction in which the virtual player's "head" faces: moving the mouse up will cause the player to look up, revealing the view above the player's head. A related function makes an image of an object rotate so that all sides can be examined. 3D design and animation software often modally chord many different combinations to allow objects and cameras to be rotated and moved through space with the few axes of movement mice can detect.
When mice have more than one button, the software may assign different functions to each button. Often, the primary (leftmost in a right-handed configuration) button on the mouse will select items, and the secondary (rightmost in a right-handed) button will bring up a menu of alternative actions applicable to that item. For example, on platforms with more than one button, the Mozilla web browser will follow a link in response to a primary button click, will bring up a contextual menu of alternative actions for that link in response to a secondary-button click, and will often open the link in a new tab or window in response to a click with the tertiary (middle) mouse button.
Types
Mechanical mice
The German company Telefunken published on their early ball mouse on 2 October 1968. Telefunken's mouse was sold as optional equipment for their computer systems. Bill English, builder of Engelbart's original mouse, created a ball mouse in 1972 while working for Xerox PARC.
The ball mouse replaced the external wheels with a single ball that could rotate in any direction. It came as part of the hardware package of the Xerox Alto computer. Perpendicular chopper wheels housed inside the mouse's body chopped beams of light on the way to light sensors, thus detecting in their turn the motion of the ball. This variant of the mouse resembled an inverted trackball and became the predominant form used with personal computers throughout the 1980s and 1990s. The Xerox PARC group also settled on the modern technique of using both hands to type on a full-size keyboard and grabbing the mouse when required.
The ball mouse has two freely rotating rollers. These are located 90 degrees apart. One roller detects the forward-backward motion of the mouse and the other the left-right motion. Opposite the two rollers is a third one (white, in the photo, at 45 degrees) that is spring-loaded to push the ball against the other two rollers. Each roller is on the same shaft as an encoder wheel that has slotted edges; the slots interrupt infrared light beams to generate electrical pulses that represent wheel movement. Each wheel's disc has a pair of light beams, located so that a given beam becomes interrupted or again starts to pass light freely when the other beam of the pair is about halfway between changes.
Simple logic circuits interpret the relative timing to indicate which direction the wheel is rotating. This incremental rotary encoder scheme is sometimes called quadrature encoding of the wheel rotation, as the two optical sensors produce signals that are in approximately quadrature phase. The mouse sends these signals to the computer system via the mouse cable, directly as logic signals in very old mice such as the Xerox mice, and via a data-formatting IC in modern mice. The driver software in the system converts the signals into motion of the mouse cursor along X and Y axes on the computer screen.
The ball is mostly steel, with a precision spherical rubber surface. The weight of the ball, given an appropriate working surface under the mouse, provides a reliable grip so the mouse's movement is transmitted accurately. Ball mice and wheel mice were manufactured for Xerox by Jack Hawley, doing business as The Mouse House in Berkeley, California, starting in 1975. Based on another invention by Jack Hawley, proprietor of the Mouse House, Honeywell produced another type of mechanical mouse. Instead of a ball, it had two wheels rotating at off axes. Key Tronic later produced a similar product.
Modern computer mice took form at the École Polytechnique Fédérale de Lausanne (EPFL) under the inspiration of Professor Jean-Daniel Nicoud and at the hands of engineer and watchmaker André Guignard. This new design incorporated a single hard rubber mouseball and three buttons, and remained a common design until the mainstream adoption of the scroll-wheel mouse during the 1990s. In 1985, René Sommer added a microprocessor to Nicoud's and Guignard's design. Through this innovation, Sommer is credited with inventing a significant component of the mouse, which made it more "intelligent"; though optical mice from Mouse Systems had incorporated microprocessors by 1984.
Another type of mechanical mouse, the "analog mouse" (now generally regarded as obsolete), uses potentiometers rather than encoder wheels, and is typically designed to be plug compatible with an analog joystick. The "Color Mouse", originally marketed by RadioShack for their Color Computer (but also usable on MS-DOS machines equipped with analog joystick ports, provided the software accepted joystick input) was the best-known example.
Optical and laser mice
Early optical mice relied entirely on one or more light-emitting diodes (LEDs) and an imaging array of photodiodes to detect movement relative to the underlying surface, eschewing the internal moving parts a mechanical mouse uses in addition to its optics. A laser mouse is an optical mouse that uses coherent (laser) light.
The earliest optical mice detected movement on pre-printed mousepad surfaces, whereas the modern LED optical mouse works on most opaque diffuse surfaces; it is usually unable to detect movement on specular surfaces like polished stone. Laser diodes provide good resolution and precision, improving performance on opaque specular surfaces. Later, more surface-independent optical mice use an optoelectronic sensor (essentially, a tiny low-resolution video camera) to take successive images of the surface on which the mouse operates. Battery powered, wireless optical mice flash the LED intermittently to save power, and only glow steadily when movement is detected.
Inertial and gyroscopic mice
Often called "air mice" since they do not require a surface to operate, inertial mice use a tuning fork or other accelerometer (US Patent 4787051) to detect rotary movement for every axis supported. The most common models (manufactured by Logitech and Gyration) work using 2 degrees of rotational freedom and are insensitive to spatial translation. The user requires only small wrist rotations to move the cursor, reducing user fatigue or "gorilla arm".
Usually cordless, they often have a switch to deactivate the movement circuitry between use, allowing the user freedom of movement without affecting the cursor position. A patent for an inertial mouse claims that such mice consume less power than optically based mice, and offer increased sensitivity, reduced weight and increased ease-of-use. In combination with a wireless keyboard an inertial mouse can offer alternative ergonomic arrangements which do not require a flat work surface, potentially alleviating some types of repetitive motion injuries related to workstation posture.
3D mice
A 3D mouse is a computer input device for viewport interaction with at least three degrees of freedom (DoF), e.g. in 3D computer graphics software for manipulating virtual objects, navigating in the viewport, defining camera paths, posing, and desktop motion capture. 3D mice can also be used as spatial controllers for video game interaction, e.g. SpaceOrb 360. To perform such different tasks the used transfer function and the device stiffness are essential for efficient interaction.
Transfer function
The virtual motion is connected to the 3D mouse control handle via a transfer function. Position control means that the virtual position and orientation is proportional to the mouse handle's deflection whereas velocity control means that translation and rotation velocity of the controlled object is proportional to the handle deflection. A further essential property of a transfer function is its interaction metaphor:
- Object-in-hand metaphor: An exterocentrical metaphor whereby the scene moves in correspondence with the input device. If the handle of the input device is twisted clockwise the scene rotates clockwise. If the handle is moved left the scene shifts left, and so on.
- Camera-in-hand metaphor: An egocentrical metaphor whereby the user's view is controlled by direct movement of a virtual camera. If the handle is twisted clockwise the scene rotates counter-clockwise. If the handle is moved left the scene shifts right, and so on.
Ware and Osborne performed an experiment investigating these metaphors whereby it was shown that there is no single best metaphor. For manipulation tasks, the object-in-hand metaphor was superior, whereas for navigation tasks the camera-in-hand metaphor was superior.
Device stiffness
Zhai used and the following three categories for device stiffness:
- Isotonic Input: An input device with zero stiffness, that is, there is no self-centering effect.
- Elastic Input: A device with some stiffness, that is, the forces on the handle are proportional to the deflections.
- Isometric Input: An elastic input device with infinite stiffness, that is, the device handle does not allow any deflection but records force and torque.
Isotonic 3D mice
Logitech 3D Mouse (1990) was the first ultrasonic mouse and is an example of an isotonic 3D mouse having six degrees of freedom (6DoF). Isotonic devices have also been developed with less than 6DoF, e.g. the Inspector at Technical University of Denmark (5DoF input).
Other examples of isotonic 3D mice are motion controllers, i.e. is a type of game controller that typically uses accelerometers to track motion. Motion tracking systems are also used for motion capture e.g. in the film industry, although that these tracking systems are not 3D mice in a strict sense, because motion capture only means recording 3D motion and not 3D interaction.
Isometric 3D mice
Early 3D mice for velocity control were almost ideally isometric, e.g. SpaceBall 1003, 2003, 3003, and a device developed at Deutsches Zentrum für Luft und Raumfahrt (DLR), cf. US patent US4589810A.
Elastic 3D mice
At DLR an elastic 6DoF sensor was developed that was used in Logitech's SpaceMouse and in the products of 3DConnexion. SpaceBall 4000 FLX has a maximum deflection of approximately 3 mm (0.12 in) at a maximum force of approximately 10N, that is, a stiffness of approximately 33 N/cm (19 lbf/in). SpaceMouse has a maximum deflection of 1.5 mm (0.059 in) at a maximum force of 4.4 N (0.99 lbf), that is, a stiffness of approximately 30 N/cm (17 lbf/in). Taking this development further, the softly elastic Sundinlabs SpaceCat was developed. SpaceCat has a maximum translational deflection of approximately 15 mm (0.59 in) and maximum rotational deflection of approximately 30° at a maximum force less than 2N, that is, a stiffness of approximately 1.3 N/cm (0.74 lbf/in). With SpaceCat Sundin and Fjeld reviewed five comparative experiments performed with different device stiffness and transfer functions and performed a further study comparing 6DoF softly elastic position control with 6DoF stiffly elastic velocity control in a positioning task. They concluded that for positioning tasks position control is to be preferred over velocity control. They could further conjecture the following two types of preferred 3D mouse usage:
- Positioning, manipulation, and docking using isotonic or softly elastic position control and an object-in-hand metaphor.
- Navigation using softly or stiffly elastic rate control and a camera-in-hand metaphor.
3DConnexion's 3D mice have been commercially successful over decades. They are used in combination with the conventional mouse for CAD. The Space Mouse is used to orient the target object or change the viewpoint with the non-dominant hand, whereas the dominant hand operates the computer mouse for conventional CAD GUI operation. This is a kind of space-multiplexed input where the 6 DoF input device acts as a graspable user interface that is always connected to the view port.
This section may require cleanup to meet Wikipedia's quality standards. The specific problem is: conflation of devices that you wave around above the desk with devices that remain on the desk while you apply forces and torques to them. (April 2020) |
Force feedback
With force feedback the device stiffness can dynamically be adapted to the task just performed by the user, e.g. performing positioning tasks with less stiffness than navigation tasks.
-
Logitech spacemouse 3D. On display at the Bolo Computer Museum, EPFL, Lausanne
-
Silicon Graphics SpaceBall model 1003 (1988), allowing manipulation of objects with six degrees of freedom
-
Logitech 3D Mouse (1990), the first ultrasonic mouse
-
A modern six-degrees-of-freedom (6 DOF) 3D mouse (2007)
-
Mechanism of the modern 6 DOF mouse consisting of infrared LEDs and detectors with occluders that move with the ball
Tactile mice
In 2000, Logitech introduced a "tactile mouse" known as the "iFeel Mouse" developed by Immersion Corporation that contained a small actuator to enable the mouse to generate simulated physical sensations. Such a mouse can augment user-interfaces with haptic feedback, such as giving feedback when crossing a window boundary. To surf the internet by touch-enabled mouse was first developed in 1996 and first implemented commercially by the Wingman Force Feedback Mouse. It requires the user to be able to feel depth or hardness; this ability was realized with the first electrorheological tactile mice but never marketed.
Pucks
Tablet digitizers are sometimes used with accessories called pucks, devices which rely on absolute positioning, but can be configured for sufficiently mouse-like relative tracking that they are sometimes marketed as mice.