Dutch Open Telescope
The open design was a departure from vacuum-style solar telescopes, and helped pave the way for bigger solar telescopes.
Cameras
The DOT has 6 cameras, each with a different filter. These filters can be used at the same time, and allows images to be taken at different wavelengths to be compared. Furthermore, some filters are tunable, allowing observers to take images at several points in the spectral lines.
Open structure
The DOT is an open telescope, which means that the structure is physically open, and the wind can blow through. Because the wind blows along the mirror the air has a more or less constant temperature, and this prevents seeing. Conventional telescope designs have the problem that hot air from the ground (which is hotter due to solar heating) is blown up along the tower, and this causes air with different temperatures to blow along the telescope, which degrades the image. A drawback of this open structure is that the skeleton has to be very rigid (do not confuse with strong), to prevent the structure from moving in the wind. Normally a solid tower takes care of this (as is done with the Swedish 1-m Solar Telescope (SST), for example), or the telescope is placed inside a dome. The DOT does not have this and thus has to be very rigid. The optical part of the telescope is mounted 2 meters in front of the main mirror, and to prevent blurred images, the cameras are mounted very rigidly and can move with a precision of micrometres.
The telescope mirror can be upgraded in size to 3/4 of a meter with small modification, and even larger with additional adaptions.
Custom designed roof
Another novel feature of the DOT is the roof which is made of a special polymer fibre which retains its shape after being stretched and does not loosen after time. The shape of the several roof sections are made in such a way that they are always under tension when closed, so it is stronger (i.e., the sections are saddle-shaped). Patterning and test installation of this specific skin is done in cooperation with the team of Poly-Ned who made more retractable coverings for telescope structures. Example of other similar projects is GREGOR project on Tenerife. A high UV resistance PVC coated Polyester weave is important for this kind of structuresm, called Textielarchitecture in Dutch.
Despeckle
The despeckle algorithm that improves the image quality allows observers to reach the diffraction limit of the telescope more often than the seeing would normally allow. The despeckle takes 100 images of the same object (e.g., a granule), but each with a temporal distance such that the atmosphere has changed drastically, but the object has not. Then by using statistics and high powered computing (a 35 dual-Xeon computer-cluster powers these despeckle algorithms) the image is improved. Before the summer of 2005 the computation took months after a day of observations, but the new cluster reduces this time to a night.
See also
References
- ^ R.J. Rutte. "DOT and the 2004 Venus transit". robrutten.nl. Retrieved 9 June 2024.
- ^ R.J. Rutte; R.H. Hammerschlag; F.C.M. Betonville (1999). "The Dutch Open Telescope 1999ASPC..158...57R Page 57". adsabs.harvard.edu. Retrieved 9 June 2024.
- ^ Rutte, Rob. "DOT tomography". robrutten.nl. Retrieved 9 June 2024.
External links
- "Dutch Open Telescope DOT". www.iac.es. Instituto de Astrofísica de Canarias. IAC. Retrieved 9 June 2024.
- Rutte, Rob (2002-10-15). "Welcome to the DOT web pages!". dot.astro.uu.nl. Archived from the original on 2002-10-16. Retrieved 9 June 2024.
- Suetterlin, P. (November 10, 1999). "DOT - The Dutch Open Telescope". dot.iac.es. Archived from the original on 2002-10-19. Retrieved 9 June 2024.
- Sütterlin, Peter "Pit" (Nov 3, 2006). "The Dutch Open Telescope Database". dotdb.strw.leidenuniv.nl. Retrieved 9 June 2024. A compilation of DOT-images.
- Paper on the image despeckle algorithm by De Wijn, A. G. (October 17, 2002). "A parallel implementation of speckle image reconstruction. Toward parallel speckle reconstruction for the Dutch Open Telescope" (PDF). staff.science.uu.nl/~rutte101. Archived from the original (PDF) on 2019-03-03. Retrieved 9 June 2024.