Loading
  • 21 Aug, 2019

  • By, Wikipedia

Institute For Laser Science

The Institute for Laser Science is a department of the University of Electro Communications, located near Tokyo, Japan.

History and achievements

Disk laser (active mirror).

Established in 1980, the Institute specializes mainly in improving the performance of gas lasers, especially excimer lasers. Between 1990 and 2005, the Institute developed fiber disk lasers, disk laser (active mirror) and the concept of power scaling. Ultra-low loss mirror was developed aiming application for high power lasers (1995).

Since 2000, its main research directions have been in the areas of solid state lasers, fiber lasers and ceramics. Since then, the Institute has carried out experiments with quantum reflection of cold excited neon atoms from silicon surfaces.

ridged atomic mirror

The institute has also performed the first experiments with quantum reflection of cold atoms from Si surface and, in particular, ridged mirrors for cold atoms and the interpretation as Zeno effect.

Microchip atomic trap

In 2004, the Institute developed the first microchip atomic trap.

Current research

Coherent addition of 4 fiber lasers

See also

References

  1. ^ Volume Table of Contents (spiedigitallibrary.org)[1]Chung, Y.C. "Proceedings Volume 1837 Applications in Optical Science and Engineering | 16 November 1992 – Frequency-Stabilized Lasers and Their Applications".
  2. ^ N.Uehara; A.Ueda; K.Ueda; H.Sekiguchi; T.Mitake; K.Nakamura; N.Kitajima; I.Kataoka (1995). "Ultralow-loss mirror of the parts-in-106 level at 1064 nm". Optics Letters. 20 (6): 530–532. Bibcode:1995OptL...20..530U. doi:10.1364/OL.20.000530. PMID 19859245.
  3. ^ F.Shimizu (2001). "Specular Reflection of Very Slow Metastable Neon Atoms from a Solid Surface". Physical Review Letters. 86 (6): 987–990. Bibcode:2001PhRvL..86..987S. doi:10.1103/PhysRevLett.86.987. PMID 11177991.
  4. ^ H.Oberst; Y.Tashiro; K.Shimizu; F.Shimizu (2005). "Quantum reflection of He* on silicon". Physical Review A. 71 (5): 052901. Bibcode:2005PhRvA..71e2901O. doi:10.1103/PhysRevA.71.052901.
  5. ^ F.Shimizu; J. Fujita (2002). "Giant Quantum Reflection of Neon Atoms from a Ridged Silicon Surface". Journal of the Physical Society of Japan. 71 (1): 5–8. arXiv:physics/0111115. Bibcode:2002JPSJ...71....5S. doi:10.1143/JPSJ.71.5. S2CID 19013515.
  6. ^ D. Kouznetsov; H. Oberst (2005). "Reflection of Waves from a Ridged Surface and the Zeno Effect". Optical Review. 12 (5): 1605–1623. Bibcode:2005OptRv..12..363K. doi:10.1007/s10043-005-0363-9. S2CID 55565166.
  7. ^ D.Kouznetsov; H.Oberst (2005). "Scattering of waves at ridged mirrors" (PDF). Physical Review A. 72 (1): 013617. Bibcode:2005PhRvA..72a3617K. doi:10.1103/PhysRevA.72.013617.
  8. ^ "Atom Optics, Coherence and Ultra Cold Atoms Archived 2007-06-29 at the Wayback Machine" on the website of ILS.
  9. ^ M.Horikoshi; K.Nakagawa (2006). "Atom chip based fast production of Bose-Einstein condensat". Applied Physics B. 82 (3): 363–366. Bibcode:2006ApPhB..82..363H. doi:10.1007/s00340-005-2083-z. S2CID 119739250.
  10. ^ D. Kouznetsov; J.-F. Bisson; J. Dong; K. Ueda (2006). "Surface loss limit of the power scaling of a thin-disk laser" (PDF). Journal of the Optical Society of America B. 23 (6): 1074–1082. Bibcode:2006JOSAB..23.1074K. doi:10.1364/JOSAB.23.001074.
  11. ^ D.Kouznetsov; J.-F.Bisson; J.Dong; K.Ueda (2007). "Scaling laws of a thin disk lasers" (PDF). Preprint ILS-UEC.
  12. ^ J.-F.Bisson; D.Kouznetsov; K.Ueda; T.Fredrich-Thornton; K.Petermann; G.Huber (2007). "Switching of emissivity and photoconductivity in highly doped Yb:Y2O3 and Lu2O3 ceramics" (PDF). Applied Physics Letters. 90 (20): 201901. Bibcode:2007ApPhL..90t1901B. doi:10.1063/1.2739318.
  13. ^ D.Kouznetsov (2007). "Broadband laser materials and the McCumber relation" (PDF). Chinese Optics Letters. 5: S240 – S242.
  14. ^ D.Kouznetsov (2007). "Efficient diode-pumped Yb:Gd2SiO5 laser: Comment" (PDF). Applied Physics Letters. 90 (6): 066101. Bibcode:2007ApPhL..90f6101K. doi:10.1063/1.2435309.
  15. ^ D.Kouznetsov; J. F. Bisson; A. Shirakawa; K. Ueda (2005). "Limits of Coherent Addition of Lasers: Simple Estimate" (PDF). Optical Review. 12 (6): 445–44. Bibcode:2005OptRv..12..445K. doi:10.1007/s10043-005-0445-8. S2CID 27508450.
  16. ^ D. Kouznetsov; J.-F. Bisson; J. Li; K. Ueda (2007). "Self-pulsing laser as oscillator Toda: Approximation through elementary functions". Journal of Physics A. 40 (9): 1–18. Bibcode:2007JPhA...40.2107K. CiteSeerX 10.1.1.535.5379. doi:10.1088/1751-8113/40/9/016. S2CID 53330023.
  17. ^ J.Dong; A. Shirakawa; K. Ueda (2007). "Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser". Laser Physics Letters. 4 (2): 109–116. Bibcode:2007LaPhL...4..109D. doi:10.1002/lapl.200610077. S2CID 31178403.
  18. ^ D.Kouznetsov; H. Oberst; K. Shimizu; A. Neumann; Y. Kuznetsova; J.-F. Bisson; K. Ueda; S. R. J. Brueck (2006). "Ridged atomic mirrors and atomic nanoscope". Journal of Physics B. 39 (7): 1605–1623. Bibcode:2006JPhB...39.1605K. CiteSeerX 10.1.1.172.7872. doi:10.1088/0953-4075/39/7/005. S2CID 16653364.
  19. ^ L.P.Nayak; P. N. Melentiev; M. Morinaga; F. L. Klein; V. I. Balykin; K. Hakuta (2007). "Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence". Optics Express. 15 (9): 5431–5438. Bibcode:2007OExpr..15.5431N. doi:10.1364/OE.15.005431. PMID 19532797.
  20. ^ M.Sadgrove; M.Horikoshi, T.Sekimura and K.Nakagawa (2007). "Rectified Momentum Transport for a Kicked Bose-Einstein Condensate". Physical Review Letters. 99 (4): 043002. arXiv:0706.1627. Bibcode:2007PhRvL..99d3002S. doi:10.1103/PhysRevLett.99.043002. PMID 17678359. S2CID 35386011.

35°39′29″N 139°32′29″E / 35.6580°N 139.5413°E / 35.6580; 139.5413