Loading
  • 21 Aug, 2019

  • By, Wikipedia

Kepler-223

Kepler-223 (KOI-730, KIC 10227020) is a G5V star with an extrasolar planetary system discovered by the Kepler mission. Studies indicate that the Kepler-223 star system consists of 4 planets orbiting the star.

Planetary system

The Kepler-223 planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 7.3845 R🜨
c 9.8456 3.4 R🜨
d 14.7887 5.2 R🜨
e 19.7257 4.6 R🜨

The confirmed planetary system was first detected by the Kepler mission, and contains four planets. This system was initially believed to contain two co-orbital planets orbiting the star at approximately the same orbital distance every 9.8 days, with one permanently locked 60° behind the other in one of the two Trojan Lagrangian points. The two co-orbital planets were thought to be locked in mean motion resonances with the other two planets, creating an overall 6:4:4:3 resonance. This would have been the first known example of co-orbital planets.

However, follow-up study of the system revealed that an alternative configuration, with the four planets having orbital periods in the ratio 8:6:4:3 is better supported by the data. This configuration does not contain co-orbital planets, and has been confirmed by further observations. It represents the first confirmed 4-body orbital resonance.

The radii are 3.0, 3.4, 5.2, and 4.6 Earth radii, and the orbital periods are 7.3845, 9.8456, 14.7887 and 19.7257 days, respectively.

See also

References

  1. ^ Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  2. ^ "KIC10 Search". Multimission Archive at STScI. 8 October 2009. Retrieved 5 March 2011.
  3. ^ Mills, S. M.; Fabrycky, D. C.; Migaszewski, C.; Ford, E. B.; Petigura, E.; Isaacson, H. (11 May 2016). "A resonant chain of four transiting, sub-Neptune planets". Nature. 533 (7604): 509–512. arXiv:1612.07376. Bibcode:2016Natur.533..509M. doi:10.1038/nature17445. PMID 27225123. S2CID 205248546.
  4. ^ "Kepler-223". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 22 August 2020.
  5. ^ Borucki, William J.; Koch, David G.; Basri, Gibor; Batalha, Natalie; Brown, Timothy M.; Bryson, Stephen T.; Caldwell, Douglas; Christensen-Dalsgaard, Jørgen; Cochran, William D.; Devore, Edna; Dunham, Edward W.; Gautier, Thomas N.; Geary, John C.; Gilliland, Ronald; Gould, Alan; Howell, Steve B.; Jenkins, Jon M.; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Rowe, Jason; Sasselov, Dimitar; Boss, Alan; Charbonneau, David; Ciardi, David; Doyle, Laurance; Dupree, Andrea K.; Ford, Eric B.; Fortney, Jonathan; et al. (2011). "Characteristics of planetary candidates observed by Kepler, II: Analysis of the first four months of data". The Astrophysical Journal. 736 (1): 19. arXiv:1102.0541. Bibcode:2011ApJ...736...19B. doi:10.1088/0004-637X/736/1/19. S2CID 15233153.
  6. ^ Koppes, S. (17 May 2016). "Kepler-223 System: Clues to Planetary Migration". Jet Propulsion Lab. Retrieved 18 May 2016.
  7. ^ Chown, Marcus (28 February 2011). "Two planets found sharing one orbit". New Scientist.
  8. ^ Emspak, Jesse (2 March 2011). "Kepler Finds Bizarre Systems". International Business Times. International Business Times Inc.
  9. ^ Beatty, Kelly (5 March 2011). "Kepler Finds Planets in Tight Dance". Sky and Telescope.