Loading
  • 21 Aug, 2019

  • By, Wikipedia

Louisville Ridge

The Louisville Ridge, often now referred to as the Louisville Seamount Chain, is an underwater chain of over 70 seamounts located in the Southwest portion of the Pacific Ocean. As one of the longest seamount chains on Earth it stretches some 4,300 km (2,700 mi) from the Pacific-Antarctic Ridge northwest to the Tonga-Kermadec Trench, where it subducts under the Indo-Australian Plate as part of the Pacific Plate. The chains formation is best explained by movement of the Pacific Plate over the Louisville hotspot although others had suggested by leakage of magma from the shallow mantle up through the Eltanin fracture zone, which it follows closely for some of its course.

Depth-sounding data first revealed existence consistent with a seamount chain in 1972 although some of the seamounts had been assigned as a ridge in 1964 linked to the Eltanin fracture zone system, hence the name.

Geology

Immediate geological relationships of the chain of the Louisville seamounts. The violet line is the very deep trenches of the Kermadec-Tonga subduction zone with its arc volcanoes to the top left. Blue represents ocean depths of a kilometer or so and brown shades are shallower. The black line delineates the East Chatham Rise part of Zealandia continental crust.

The oldest volcanic rocks of the chain come from Osbourn Seamount at 78.8 ± 1.3 Ma and ages become younger in a non linear fashion towards the south east with a youngest age of 1.1 Ma.

Composition studies of the erupted dominantly alkali basalt are consistent with a single Louisville mantle source distinct from other hotspots and the composition has remained homogeneous over at least the last 70 million years. In the past 25 million years magma upwelling rates may have decreased. There is almost certainly a deep plume origin to the hotspot.

The Louisville hotspot chain passes through the western and eastern branches of the Wishbone scarp and while the seamounts show no compositional change as they cross the scarps, the East Wishbone scarp crossing point is associated with a distinct decrease in the volume of the younger seamount eruptives from that point east into the Pacific Plate.

Tectonics

Volcanic hotspot chains are used to suggest the net movements of tectonic plates and so in the case of the large Pacific Plate validation of models of its movement and indeed the hot spot hypothesis itself relies on data from several hot spot chains. As well as the Louisville hotspot there is data over tens of millions of years available from the movements of the Hawaii hotspot and the Arago hotspot. While the model of Pacific Plate movement, including bends in the hotspot track can be made to fit very well there has been long debate on timing of such bends as mismatchs of a few million years appeared to exist.

Subduction

The area of subduction of the Louisville chain into the Tonga Trench is associated with a relative seismic gap beneath the Tonga forearc. This implies that the subduction of the volcanoes compared to normal sediment has a significant impact in terms of normal relief of stress but it is unclear if the subducted volcanoes relieve it as suggested by some or say increase potential for sudden release. Further a postulated historic change in trend of the subducted Louisville chain compared to present is backed up by compositional analysis of more recent arc volcanism as the volcanics from the Louisville chain are recycled. A bathymetric high c. 2 km (1.2 mi) north-west of the Osbourn Seamount has been interpreted as the currently subducting portion of the Louisville chain, but this continuation is not aligned with the existent chain.

Ecology

Some of the seamounts are known coral reef stoney habitats, with typical species including the coral Solenosmilia variabilis, brisingid starfishes (Order Brisingida), and sea-lilies and feather stars (Class Crinoidea). They can be a fishery resource for species such as the orange roughy (Hoplostethus atlanticus) that can be fished by bottom trawling.

Seamounts

The Louisville Ridge includes the following:

Louisville Seamounts or Guyots
Name/ID Position Age Minimum Depth Notes/Source
39 South Seamount 39°06′S 167°24′W / 39.1°S 167.4°W / -39.1; -167.4 878 m (2,881 ft)
AMAT 1D-1 27°30.9′S 174°20.6′W / 27.5150°S 174.3433°W / -27.5150; -174.3433 68.9 to 70.8 Ma
AMAT 7D 38°2.3′S 168°15.9′W / 38.0383°S 168.2650°W / -38.0383; -168.2650 50.9 to 47.4 Ma
AMAT 14D 39°13.1′S 167°37.1′W / 39.2183°S 167.6183°W / -39.2183; -167.6183 44.7 to 43.9 Ma
AMAT 15D-1 39°31.2′S 167°15.3′W / 39.5200°S 167.2550°W / -39.5200; -167.2550 45.1±0.3 Ma
AMAT 16D-1 39°40.6′S 166°38.6′W / 39.6767°S 166.6433°W / -39.6767; -166.6433 43.3±0.4 Ma
AMAT 17D-1 39°51.9′S 166°2.7′W / 39.8650°S 166.0450°W / -39.8650; -166.0450 41.3±0.3 Ma
AMAT 20D 40°26.7′S 165°44.4′W / 40.4450°S 165.7400°W / -40.4450; -165.7400 40.4 to 39.8 Ma
AMAT 22D 40°44.5′S 165°27.6′W / 40.7417°S 165.4600°W / -40.7417; -165.4600 39.6 to 38.9 Ma
AMAT 24D 41°52.7′S 163°41.9′W / 41.8783°S 163.6983°W / -41.8783; -163.6983 34.7 to 33.7 Ma
AMAT 26D 43°34.5′S 161°29.3′W / 43.5750°S 161.4883°W / -43.5750; -161.4883 32.2 to 29.5 Ma
AMAT 27D 43°59.7′S 160°37.1′W / 43.9950°S 160.6183°W / -43.9950; -160.6183 29.3 to 26.3 Ma
AMAT 28D 44°16.5′S 159°48.9′W / 44.2750°S 159.8150°W / -44.2750; -159.8150 25.6 ± 0.2 Ma
AMAT 30D 44°50.6′S 158°28.4′W / 44.8433°S 158.4733°W / -44.8433; -158.4733 26.3 to 26.0 Ma
AMAT 31D 45°22.9′S 157°44′W / 45.3817°S 157.733°W / -45.3817; -157.733 24.6 to 23.9 Ma
AMAT 33D 46°13.2′S 155°52.7′W / 46.2200°S 155.8783°W / -46.2200; -155.8783 21.5 to 21.7 Ma
Anvil Seamount 37°34′S 169°09′W / 37.56°S 169.15°W / -37.56; -169.15 1,036 m (3,399 ft)
Archerbar Seamount, U1375 33°44′S 171°26′W / 33.73°S 171.44°W / -33.73; -171.44 62.8 to 60.8 Ma Not gazetted name, and note that poor sample specimen, Latest ages
Burton Seamount (s) 32°25′00″S 171°45′00″W / 32.416667°S 171.75°W / -32.416667; -171.75 64.2 to 62.8 Ma Location and Gazetted names, Latest ages and also known as Burton Guyot
Canopus Seamount, U1372 26°29′6″S 174°43′8″W / 26.48500°S 174.71889°W / -26.48500; -174.71889 73.8 to 72.1  Ma Not gazetted name, Location, Latest ages
Censeam Seamount 36°55′S 169°44′W / 36.92°S 169.73°W / -36.92; -169.73 955 m (3,133 ft)
Currituck Seamount 30°12′00″S 173°14′00″W / 30.2°S 173.233333°W / -30.2; -173.233333 61.4 ± 0.5 Ma 1,750 m (5,740 ft) Also named Carrituck Seamount, Currituok Seamount, Gora Karrituok, Гора Карритуок
Danseur Seamount 36°00′S 169°30′W / 36°S 169.5°W / -36; -169.5
Darvin Guyot 43°24′00″S 161°25′00″W / 43.4°S 161.41667°W / -43.4; -161.41667 393 m (1,289 ft) Named from the Russian research vessel "Darvin" of the Russian Fisheries Ministry that discovered it in 1985
Forde Seamount 35°24′S 170°24′W / 35.4°S 170.4°W / -35.4; -170.4 980 m (3,220 ft)
Ghost Seamount 40°42′S 165°21′W / 40.7°S 165.35°W / -40.7; -165.35 620 m (2,030 ft)
Hadar Seamount, U1377B, AMAT 10D 38°11.25′S 168°38.26′W / 38.18750°S 168.63767°W / -38.18750; -168.63767 51.2 to 45.1  Ma Not gazetted name, Location, Latest ages
JCM Seamount 38°25′S 167°59′W / 38.41°S 167.99°W / -38.41; -167.99 265 m (869 ft)
Osbourn Seamount 26°S 175°W / 26°S 175°W / -26; -175 78.8 to 76.7 Ma Other names Gora Osborn, Ozbourn Seamount, Ozbourne Seamoun, Гора Осборн
Pierson Seamount 34°58′00″S 170°45′00″W / 34.966667°S 170.75°W / -34.966667; -170.75
Rigil Guyot, U1374 29°35′7″S 173°22′8″W / 29.58528°S 173.36889°W / -29.58528; -173.36889 70.1 to 67.4 Ma Not gazetted name, Location, Latest ages
Rumyantsev Seamount 46°11′01″S 155°53′39″W / 46.18359°S 155.8942°W / -46.18359; -155.8942 Named after the Russian ichthyologist A. I. Rumyantsev
Seafox Seamount 30°37′00″S 172°50′00″W / 30.616667°S 172.833333°W / -30.616667; -172.833333
Trobriant Seamount 33°40′00″S 171°25′00″W / 33.666667°S 171.416667°W / -33.666667; -171.416667
Valerie Guyot 41°27′S 164°15′W / 41.45°S 164.25°W / -41.45; -164.25 750 m (2,460 ft)
Vostok Seamount 39°10′00″S 167°22′00″W / 39.16667°S 167.36667°W / -39.16667; -167.36667 823 m (2,700 ft) Dimensions 43 km (27 mi) x 31 km (19 mi), named after the Russian ship "Vostok"

See also