PMMR 62
Overview
Although red supergiants are often considered the largest stars, some other star types have been found to temporarily increase significantly in radius, such as during LBV eruptions or luminous red novae. Luminous red novae appear to expand extremely rapidly, reaching thousands to tens of thousands of solar radii within only a few months, significantly larger than the largest red supergiants.
Some studies use models that predict high-accreting Population III or Population I supermassive stars (SMSs) in the very early universe could have evolved "red supergiant protostars". These protostars are thought to have accretion rates larger than the rate of contraction, resulting in lower temperatures but with radii reaching up to many tens of thousands of R☉, comparable to some of the largest known black holes.
Angular diameters
The angular diameters of stars can be measured directly using stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test indirect methods of finding stellar radii. Only a few supergiants can be occulted by the Moon, including Antares and 119 Tauri. Examples of eclipsing binaries are Epsilon Aurigae (Almaaz), VV Cephei, and V766 Centauri (HR 5171). Angular diameter measurements can be inconsistent because the boundary of the very tenuous atmosphere (opacity) differs depending on the wavelength of light in which the star is observed.
Uncertainties remain with the membership and order of the lists, especially when deriving various parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or be within a large range of values. Values for stellar radii vary significantly in different sources and for different observation methods.
All the sizes stated in these lists have inaccuracies and may be disputed. The lists are still a work in progress and parameters are prone to change.
Caveats
Various issues exist in determining accurate radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions; these include:
- Stellar radii or diameters are usually derived only approximately using the Stefan–Boltzmann law for the deduced stellar luminosity and effective surface temperature.
- Stellar distances, and their errors, for most stars, remain uncertain or poorly determined.
- Many extended supergiant atmospheres also significantly change in size over time, regularly or irregularly pulsating over several months or years as variable stars. This makes adopted luminosities poorly known and may significantly change the quoted radii.
- Other direct methods for determining stellar radii rely on lunar occultations or from eclipses in binary systems. This is only possible for a very small number of stars.
- Many distance estimates for red supergiants come from stellar cluster or association membership, because it is difficult to calculate accurate distances for red supergiants that are not part of any cluster or association.
- In these lists are some examples of extremely distant extragalactic stars, which may have slightly different properties and natures than the currently largest known stars in the Milky Way. For example, some red supergiants in the Magellanic Clouds are suspected to have slightly different limiting temperatures and luminosities. Such stars may exceed accepted limits by undergoing large eruptions or changing their spectral types over just a few months (or potentially years).
Lists
The following lists show the largest known stars based on the host galaxy.
Milky Way
Star name | Solar radius (R☉) | Method | Notes |
---|---|---|---|
Orbit of Saturn | 2,047–2,049.9 | Reported for reference | |
Theoretical limit of star size (Milky Way) | ≳1,700 | L/Teff | Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of supernova progenitor candidates. Assumes an effective temperature of 3605 K. Reported for reference |
RSGC1-F01 | 1,530 ± 365 | L/Teff | |
VY Canis Majoris | 1,420±120 | AD | An extreme oxygen-rich red hypergiant that has experienced two dimming periods in the 20th century where the star became dimmer by up to 2.5 magnitudes. Potentially the largest known star in the Milky Way. There is a possilbility that this size might be a bit overestimated (on the order of 1 sigma). Hence, the quoted radius might be just an upper limit. |
AH Scorpii | 1,411±124 | AD | |
RSGC1-F06 | 1,382 ± 331 | L/Teff | |
S Persei | 1,364±6 | AD | |
VX Sagittarii | 1,360+250 −230 – 1,480+180 −160 |
AD | The most luminous known asymptotic giant branch star. Widely recognised as being among the largest known stars. |
NML Cygni | <1,350+195 −229 |
AD | Surrounding dusty region is very complex making the radius hard to determine. |
Stephenson 2 DFK 2 | 1,301 ± 285 | L/Teff | Another red supergiant, Stephenson 2 DFK 1 has an estimated radius of 2,150 R☉. However, it is potentially not a member of the Stephenson 2 cluster and also has a distance with an uncertainty of ≳50% due to it only being measured with radial velocities. |
Stephenson 2 DFK 49 | 1,300 ± 283 | L/Teff | A K-type star similar to the yellow hypergiant IRC +10420 that has left its red supergiant stage. |
HD 143183 (V558 Normae) | 1,261 | L/Teff | |
PZ Cassiopeiae | 1,259 – 1,336, 1,585+160 −120 |
L/Teff & AD | |
μ Cephei (Herschel's Garnet Star) | 1,259, 1,420, 1,426 −119 |
L/Teff & AD | Widely recognised as being among the largest known stars. Might be the largest star visible to the naked eye. |
RSGC1-F10 | 1,246 ± 292 | L/Teff | |
V354 Cephei | 1,245 | L/Teff | |
Westerlund 1 W237 (Westerlund 1 BKS B) | 1,241±70 | L/Teff | |
ST Cephei | 1,218 | L/Teff | |
IRC -10414 | ~1,200 | L/Teff | |
V517 Monocerotis | 1,196+80 −159 |
L/Teff | |
RSGC1-F05 | 1,185 ± 312 | L/Teff | |
GCIRS 7 | 1,170±60, 1,359, 1,368 | AD & L/Teff | |
Westerlund 1 W26 (Westerlund 1 BKS AS) | 1,165±58–1,221±120 | L/Teff | |
EV Carinae | 1,165 | L/Teff | |
[A72c] 16 | 1,157 | L/Teff | |
WY Velorum A | 1,157 | L/Teff | A symbiotic binary. |
RSGC1-F08 | 1,150 ± 259 | L/Teff | |
RSGC1-F02 | 1,128 ± 262 | L/Teff | |
Orbit of Jupiter | 1,114.5–1,115.8 | Reported for reference | |
V582 Cassiopeiae | 1,111 | L/Teff | |
RW Cygni | 1,103+251 −177 |
AD | |
RW Cephei | 1,100±40 | AD | A K-type hypergiant star that experienced a "great dimming" event in 2022, similar to Betelgeuse. |
RT Carinae | 1,090 | L/Teff | |
RSGC1-F04 | 1,082, 1,100, 1,422+305 −390 |
L/Teff | |
UU Persei | 1,079+9 −8 |
L/Teff | |
LL Pegasi | 1,074 | L/Teff | |
HD 126577 | 1,066+9 −32 |
L/Teff | |
V766 Centauri Aa | 1,060–1,160 | ? | V766 Centauri Aa is a rare variable yellow hypergiant. |
HaroChavira 1 | 1,058 | L/Teff | |
CM Velorum | 1,048 – 1,416.24+0.40 −0.96 |
L/Teff | |
AG Camelopardalis | 1,048 | L/Teff | |
SU Persei | 1,044+31 −21 – 1,139+34 −23, |
AD | |
SW Cephei | 1,035+75 −120 |
AD | |
KY Cygni | 1,032 | L/Teff | |
RSGC1-F11 | 1,032 ± 232 | L/Teff | |
BC Cygni | 1,031–1,187+34 −37 |
L/Teff | A more detailed but older study gives values of 1,081 R☉ (856–1,375) for the year 2000, and 1,303 R☉ (1,021–1,553) for the year 1900. |
MY Cephei | 1,028 ± 169 – 1,138 ± 387 | L/Teff | |
V346 Puppis | 1,025 | L/Teff | |
V530 Cassiopeiae | 1,017 | L/Teff | |
RSGC1-F13 | 1,017 ± 246 | L/Teff | |
V602 Carinae | 1,015 | AD | |
VV Cephei A | 1,015 | AD | A red supergiant star orbited by a smaller B-type main-sequence star with a radius estimated between 13 and 25 R☉. Widely recognised as being among the largest known stars. Another estimate give a radius of 660 R☉ based on the Gaia DR3 distance of 1 kpc. |
U Lacertae A | 1,013 | L/Teff | |
KW Sagittarii | 1,009±142 | AD | |
Ve 4-64 | 1,007 | L/Teff | |
RSGC1-F07 | 1,006 ± 238 | L/Teff | |
V349 Carinae | 1,002+12 −74 |
L/Teff | |
V674 Cephei | 999 | L/Teff | |
RSGC1-F09 | 996 ± 498 | L/Teff | |
IRAS 18111-2257 | ~990 – 1,200 | L/Teff | Estimated based on the bolometric luminosity (14,000–20,000 L☉) and assumed effective temperature of 2,000 K. Another period-luminosity-derived luminosity for this star results in a radius of 1,730 R☉. |
CZ Hydrae | 986 | L/Teff | |
CIT 11 | 982 | L/Teff | |
V381 Cephei Aa | 977 | L/Teff | |
MSX6C G086.5890–00.7718 | (975+175 −183–1,035+186 −158)–1,196.91+6.31 −6.35 |
L/Teff | Lower values based on the Gaia DR3 effective temperature and the luminosity of Levesque et al. (2005) and that of Messineo & Brown (2019). Higher value based on the GSP Phot-Aeneas library using BR/RP spectra in Gaia DR3. |
V3953 Sagittarii (IRC −30398) | 970 | L/Teff | |
V396 Centauri | 965 | L/Teff | |
UW Aquilae | 964 | L/Teff | |
RSGC1-F12 | 955 ± 226 | L/Teff | |
RSGC1-F03 | 942 ± 196 | L/Teff | |
V398 Cassiopeiae (HD 240275) | 941 | L/Teff | |
IRC +60342 | 940 | L/Teff | |
ψ Aurigae | 934 | L/Teff | |
GX Monocerotis | 931 | L/Teff | |
V645 Cephei | 920 | L/Teff | |
S Cassiopeiae | 920 | L/Teff | One of the coolest known stars, at an effective temperature of 1800 K (1500 °C). |
NV Aurigae (IRC +50137) | 918 | L/Teff | |
Stephenson 2 DFK 5 | 911 ± 182 | L/Teff | |
UY Scuti | 909 | L/Teff | Initially reported 1,708 R☉, making it the largest star, a 2023 measurement put the radius at a smaller value of 909 R☉ based on the multimessenger monitoring of supernovae. |
NR Vulpeculae | 908 – 923+62 −50 |
L/Teff | |
KU Andromedae (IRC +40004) | 900 – 1,044
|
L/Teff | |
V774 Sagittarii | 889 | L/Teff | |
V923 Centauri | 881 | L/Teff | |
IRAS 20341+4047 | 880 | L/Teff | |
V540 Sagittarii | 880 | L/Teff | |
V386 Cephei | 879 | L/Teff | |
Trumpler 27-1 (CD-33 12241) | 876+5 −12 |
? | |
T Lyrae | 876 | L/Teff | |
TYC 3996-552-2 | 870 | L/Teff | |
V1300 Aquilae (IRC −10529) | 858–1,059
|
L/Teff | |
V1417 Aquilae | 866 | L/Teff | |
Westerlund 1 W20 (Westerlund 1 BKS D) | 858±48 | L/Teff | |
FX Serpentis | 857 | L/Teff | |
AZ Cygni | 856+20 −14 – 927+21 −15 |
AD | Estimated based on data from the CHARA array. Another radii of 890+21 −15 R☉ (2014), 895+21 −15 R☉ (2015) and 890+21 −15 R☉ (2016) are calculated based on the same data. |
V348 Velorum | 855 | L/Teff | |
Stephenson 2 DFK 3 | 965 ± 208 | L/Teff | |
BI Cygni | 852+12 −9 – 908+12 −10 |
AD | |
TW Carinae | 835 | L/Teff | |
V358 Cassiopeiae | 835 | L/Teff | |
VLH96 A | 833 | L/Teff | |
DO 26226 | 826 | L/Teff | |
HD 155737 | 823 | L/Teff | |
6 Geminorum | 821 | L/Teff | |
RW Leonis Minoris |
820 – 1,028 |
L/Teff | |
HaroChavira 2 | 813 | L/Teff | |
HD 300933 | 806 | L/Teff | |
[W61c] R 53 | 801 | L/Teff | |
U Arietis | 801±205 | AD | |
RT Ophiuchi | 801±217 | AD | |
HD 95687 | 797 | L/Teff | |
BO Carinae | 790±158 | L/Teff | |
HD 62745 | 790 | L/Teff | |
WX Piscium | 790 – 1,044 | L/Teff | |
VR5–7 | 775 ± 65 | L/Teff | |
T Cancri | 770 | L/Teff | |
V Cygni | 770 | L/Teff | |
CL Carinae | 770 | L/Teff | |
RS Persei | 770±30, 775+110 −85 |
AD | |
V355 Cephei | 770±154 – 790 | L/Teff | |
BD+63 3 | 770 | L/Teff | |
BD+63 270 | 769 | L/Teff | |
V644 Cephei | 765 | L/Teff | |
BM VIII 11 | 754 | L/Teff | |
[SLN74] 2130 | 752 | L/Teff | |
IRAS 10176-5802 | 751.2+0.4 −0.6–(793+281 −152–849+172 −133) |
L/Teff | Lower value based on the GSP Phot-Aeneas library using BR/RP spectra in Gaia DR3. Higher values based on the Gaia DR3 effective temperature and the luminosity of Levesque et al. (2005) and that of Messineo & Brown (2019). |
HD 303250 | 750±150 | L/Teff | |
R Leporis (Hind's Crimson Star) | 750 | AD | Size range from 645 to 860 R☉. |
V384 Persei | 750 – 937 | L/Teff | |
V466 Persei | 750 | L/Teff | |
V Coronae Borealis | 749 | L/Teff | |
GY Aquilae | 748 – 920 | AD | |
TT Centauri | 744 | L/Teff | |
UU Pegasi | 742±193 | AD | |
IM Cassiopeiae | 740 | L/Teff | |
GY Camelopardalis | 736 | L/Teff | |
RSGC3-S3 | 735 ± 151 | L/Teff | |
R Andromedae | 733 | L/Teff | |
Stephenson 2 DFK 10 | 730 | L/Teff | |
V1259 Orionis | 729 | L/Teff | |
RSGC3-S15 | 728 ± 138 | L/Teff | |
HD 105563 A | 723 | L/Teff | |
Westerlund 1 W75 (Westerlund 1 BKS E) | 722±36 | L/Teff | |
V1111 Ophiuchi (IRC +10365) | 721 – 902 | L/Teff | |
XX Persei | 718+80 −56 |
AD | Another study from the same author estimates 681+12 −9 R☉. |
AI Volantis | 717 | L/Teff | |
RX Telescopii | 716 | L/Teff | |
V Camelopardalis | 716±185 | AD | |
CD-61 3575 | 716 | L/Teff | |
S Cephei | 715 | L/Teff | |
AS Cephei | 713 | L/Teff | |
V770 Cassiopeiae (BD+60 299) | 713 | L/Teff | |
AZ Cephei | 712 | L/Teff | |
MZ Puppis | 708 | L/Teff | |
GP Cassiopeiae | 707 – 771.74+0.23 −0.86 |
L/Teff | |
GCIRS 12N | 703 ± 107 | L/Teff | |
V528 Carinae | 700±140 | L/Teff | |
The following well-known stars are listed for the purpose of comparison. | |||
Antares (α Scorpii A) | 680 | AD | Fourteenth brightest star in the night sky. Widely recognised as being among the largest known stars. |
Betelgeuse (α Orionis) | 640, 764+116 −62, 782 ± 55 |
AD & SEIS | Tenth brightest star in the night sky. Widely recognised as being among the largest known stars, radius decreased to ~500 R☉ during the 2020 great dimming event. |
R Horologii | 635 | L/Teff | A red giant star with one of the largest ranges in brightness known of stars in the night sky visible to the unaided eye. Despite its large radius, it is less massive than the Sun. |
119 Tauri (CE Tauri, Ruby Star) | 587 – 593 | AD | |
ρ Cassiopeiae | 564±67 – 700±112 | AD | A yellow hypergiant star, similar to V382 Carinae, that is also visble to the naked eye. |
CW Leonis | 560 | L/Teff | The nearest carbon star. |
V509 Cassiopeiae | 511±112 | AD | A variable yellow hypergiant whose size varied from around 680 R☉ in 1950–1970 to 910 R☉ in 1977, and later decreased to 390 R☉ in the 1990s. |
V382 Carinae (x Carinae) |
485 ± 56 | L/Teff | A yellow hypergiant, one of the rarest types of stars. |
V838 Monocerotis | 464 | L/Teff | During the 2002 Red Nova, the star's radius may have increased up to 3,190 R☉. |
Pistol Star (V4647 Sagittarii) | 420 | L/Teff | One of the most luminous stars known. |
La Superba (Y Canum Venaticorum) | 344 | L/Teff | |
Mira (ο Ceti A) | 332–402 | AD | Prototype of the Mira variables. |
Orbit of Mars | 322–323.1 | Reported for reference | |
R Doradus | 298±21 | AD | The extrasolar star with the largest apparent size. |
Rasalgethi (α Herculis A) | 284±60 (264–303) | L/Teff | |
Cygnus OB2#12 | 246 | ? | One of the most massive and luminous stars known. |
Orbit of Earth (~1 AU) | 214 | Reported for reference | |
Suhail (λ Velorum) | 211±6 | AD | |
Wezen (δ Canis Majoris) | 188 | L/Teff | Thirty-sixth brightest star in the night sky. |
Enif (ε Pegasi) | 178 | L/Teff | |
Orbit of Venus | 158.6 | Reported for reference | |
η Carinae A | 128 – 742 | OD | During the 1843 Great Eruption, the star's radius may have increased up to 4,319–6,032 R☉. |
Deneb (α Cygni) | 107 – 203±17 | AD & ? | Eighteenth brightest star in the night sky. |
Orbit of Mercury | 82.9–84.6 | Reported for reference | |
Rigel (β Orionis A) | 74.1+6.1 −7.3 |
AD | Seventh brightest star in the night sky. |
Canopus (α Carinae) | 73.3 | AD | Second brightest star in the night sky. |
Gacrux (γ Crucis) | 73 | L/Teff | Twenty-sixth brightest star in the night sky. |
Polaris (α Ursae Minoris) | 46.27±0.42 | AD | The current star in the North Pole. It is a Classical Cepheid variable, and the brightest example of its class. |
Aldebaran (α Tauri) | 45.1±0.1 | AD | Fourteenth brightest star in the night sky. |
Arcturus (α Boötis) | 25.4 ± 0.2 | AD | This is the nearest red giant to the Earth, and the fourth brightest star in the night sky. |
Pollux (β Geminorum) | 9.06 ± 0.03 | AD | The nearest giant star to the Earth. |
Spica (α Virginis A) | 7.47±0.54 | One of the nearest supernova candidates and the sixteenth-brightest star in the night sky. | |
Regulus (α Leonis A) | 4.16 × 3.14 | The nearest B-type star to the Earth. | |
Vega (α Lyrae) | 2.726±0.006 × 2.418±0.012 | AD | Fifth brightest star in the night sky. |
Altair (α Aquilae) | 2.01 × 1.57 | Twelfth brightest star in the night sky. | |
Sirius (α Canis Majoris A) | 1.713 | AD | The brightest star in the night sky. |
Rigil Kentaurus (α Centauri A) | 1.2175 | AD | Third brightest star in the night sky. |
Sun | 1 | The largest object in the Solar System. |
Magellanic Clouds
Star name | Solar radii (Sun = 1) |
Galaxy | Method | Notes |
---|---|---|---|---|
Theoretical limit of star size (Large Magellanic Cloud) | ≳1,550 | L/Teff | Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of 3545 K. Reported for reference | |
HV 888 | 1,477–1,584 | Large Magellanic Cloud | L/Teff | |
HD 269551 A | 1,439 | Large Magellanic Cloud | L/Teff | |
HV 12463 | 1,420 | Large Magellanic Cloud | L/Teff | |
IRAS 05280–6910 | 1,367 | Large Magellanic Cloud | L/Teff | The most reddened object in the Large Magellanic Cloud. |
MSX LMC 597 | 1,278–1,444 | Large Magellanic Cloud | L/Teff | |
OGLE BRIGHT-LMC-LPV-52 | 1,275–1,384 | Large Magellanic Cloud | ||
HV 2834 | 1,253 | Large Magellanic Cloud | L/Teff | |
LMC 145013 | 1,243 | Large Magellanic Cloud | L/Teff | |
IRAS 05346-6949 | 1,211 | Large Magellanic Cloud | L/Teff | It has an estimated mass-loss rate of 0.0017 M☉ (566 Earths) per year, the highest for any star. |
HV 5618 | 1,163 | Large Magellanic Cloud | L/Teff | |
HV 2242 | 1,160 – 1,180 | Large Magellanic Cloud | L/Teff | |
LMC 25320 | 1,156 | Large Magellanic Cloud | L/Teff | |
SMC 18592 | 1,129 | Small Magellanic Cloud | L/Teff | |
MSX SMC 018 | 1,119 | Small Magellanic Cloud | L/Teff | |
LMC252 | 1,117–1,164 | Large Magellanic Cloud | ||
LMC045 | 1,112 | Large Magellanic Cloud | L/Teff | |
SP77 21-12 | 1,103 | Large Magellanic Cloud | L/Teff | |
MSX LMC 810 | 1,104 | Large Magellanic Cloud | L/Teff | |
WOH S338 | 1,100 | Large Magellanic Cloud | L/Teff | |
LMC 136042 | 1,092 | Large Magellanic Cloud | L/Teff | |
LMC 175188 | 1,090–1,317 | Large Magellanic Cloud | ||
IRAS 04516-6902 | 1,085 | Large Magellanic Cloud | L/Teff | |
WOH S274 | 1,071 | Large Magellanic Cloud | L/Teff | |
[W60] D44 | 1,063 | Large Magellanic Cloud | L/Teff | |
HV 12233 | 1,057 | Large Magellanic Cloud | L/Teff | |
MSX LMC 589 | 1,051 | Large Magellanic Cloud | L/Teff | |
Theoretical limit of star size (Small Magellanic Cloud) | ≳1,050 | L/Teff | Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of 3850 K. Reported for reference | |
MSX LMC 947 | 1,050 | Large Magellanic Cloud | L/Teff | |
LMC 144217 | 1,039 | Large Magellanic Cloud | ||
SP77 31-18 | 1,038 | Large Magellanic Cloud | L/Teff | |
IRAS 05402-6956 | 1,032 | Large Magellanic Cloud | L/Teff | |
IRAS 04509-6922 | 1,027–1,187 | Large Magellanic Cloud | L/Teff | |
HV 2255 | 1,027–1,236 | Large Magellanic Cloud | ||
TRM 36 | 1,019 | Large Magellanic Cloud | L/Teff | |
LMC 175549 | 1,005 | Large Magellanic Cloud | L/Teff | |
TRM 89 | 1,004–1,526 | Large Magellanic Cloud | ||
B90 (WOH S264) | 1000+70 −80 – 1,210 |
Large Magellanic Cloud | L/Teff | Has an unusually high metallicity and velocity. Often referred to as its SIMBAD designation [W60] B90. Discrepancy in radius is caused by a potential underestimation of the effective temperature measured from the Titanium(II) oxide bands. |
HV 2450 | 1,000+2 −1–1,071 |
Large Magellanic Cloud | L/Teff | A yellow hypergiant. |
LMC 149767 | 994 | Large Magellanic Cloud | L/Teff | |
UCAC2 2674864 (HV 2834) | 990+115 −100 |
Large Magellanic Cloud | L/Teff | |
HV 996 | 988–1,176 | Large Magellanic Cloud | ||
W61 8–88 | 986 | Large Magellanic Cloud | L/Teff | |
HV 2362 | 982 – 1,030 | Large Magellanic Cloud | L/Teff | |
MG73 59 | 979 | Large Magellanic Cloud | L/Teff | A yellow supergiant. |
HD 268757 | 979 | Large Magellanic Cloud | L/Teff | A G8 yellow hypergiant. |
SMC 56389 | 976 | Small Magellanic Cloud | L/Teff | |
LMC 136404 | 974 | Large Magellanic Cloud | L/Teff | |
SP77 46-32 | 973–1,133 | Large Magellanic Cloud | ||
HV 2084 | 967–1,083 | Small Magellanic Cloud | ||
WOH S74 | 965–1,014 | Large Magellanic Cloud | L/Teff | |
SMC 10889 | 963 | Small Magellanic Cloud | L/Teff | |
TRM 67 | 951 | Large Magellanic Cloud | L/Teff | |
LHA 120-S 26 | 951 | Large Magellanic Cloud | L/Teff | |
LMC 139413 | 951 | Large Magellanic Cloud | L/Teff | |
TRM 87 | 947 | Large Magellanic Cloud | L/Teff | |
LMC 148035 | 947 | Large Magellanic Cloud | L/Teff | |
HV 12802 | 946–1,377 | Large Magellanic Cloud | ||
SMC 018136 | 945 | Small Magellanic Cloud | L/Teff | |
LMC 142202 | 943 | Large Magellanic Cloud | L/Teff | |
LMC 147199 | 939 – 990 | Large Magellanic Cloud | L/Teff | |
SP77 37-24 | 936 | Large Magellanic Cloud | L/Teff | |
LMC 148381 | 932 | Large Magellanic Cloud | L/Teff | |
LMC 23095 | 926 – 1,280 | Large Magellanic Cloud | L/Teff | |
SP77 31-16 | 923±28 | Large Magellanic Cloud | L/Teff | A yellow hypergiant. |
LMC 170452 | 920 | Large Magellanic Cloud | L/Teff | |
SP77 44-5 | 918 | Large Magellanic Cloud | L/Teff | |
LMC 66778 | 915 – 990 | Large Magellanic Cloud | L/Teff | |
NGC371 R20 | 913 | Small Magellanic Cloud | L/Teff | |
LMC 150040 | 911 | Large Magellanic Cloud | L/Teff | |
HV 2236 | 911–971 | Large Magellanic Cloud | L/Teff | |
TRM 108 | 906 | Large Magellanic Cloud | L/Teff | |
LMC 169142 | 902 | Large Magellanic Cloud | L/Teff | |
WOH S457 | 902±45 | Large Magellanic Cloud | L/Teff | |
IRAS 04498-6842 (LI-LMC 60) | 898 – 1,137 – 1,765, 1,224 | Large Magellanic Cloud | L/Teff | Lower value derived from fitting models that assume the star's effective temperature to be 3,400 K. Higher value based on the measured effective temperature from van Loon et al. (2005). A newer paper estimates parameters that would result in a radius of 1,765 R☉. |
LMC 135720 | 898 | Large Magellanic Cloud | L/Teff | |
SMC 81961 | 892 | Small Magellanic Cloud | L/Teff | |
SP77 44-19 | 891–1,297 | Large Magellanic Cloud | L/Teff | |
SP77 45–49 | 890 | Large Magellanic Cloud | L/Teff | |
LMC 175464 | 892–982 | Large Magellanic Cloud | ||
SMC 49478 | 888 | Small Magellanic Cloud | L/Teff | |
HV 12185 | 890+55 −65 |
Large Magellanic Cloud | L/Teff | |
SP77 45–53 | 885–981 | Large Magellanic Cloud | ||
LMC 170079 | 882 | Large Magellanic Cloud | L/Teff | |
SMC 5092 | 880 | Small Magellanic Cloud | L/Teff | |
HV 12793 | 880+45 −65 |
Large Magellanic Cloud | L/Teff | |
W61 21–22 | 877 | Large Magellanic Cloud | L/Teff | |
SP77 35-1 | 877 | Large Magellanic Cloud | L/Teff | |
UCAC3 43-23216 | 873 | Large Magellanic Cloud | L/Teff | |
HV 11423 | 872 | Small Magellanic Cloud | L/Teff | |
WOH S57 | 875+70 −60 |
Large Magellanic Cloud | L/Teff | |
SP77 53-3 | 870 | Large Magellanic Cloud | L/Teff | |
SP77 36-14 | 870 | Large Magellanic Cloud | L/Teff | |
SP77 31-19 | 870 | Large Magellanic Cloud | L/Teff | |
LMC 158646 | 865 | Large Magellanic Cloud | L/Teff | |
SP77 31-20 | 864 | Large Magellanic Cloud | L/Teff | |
LMC 113364 | 864 | Large Magellanic Cloud | L/Teff | |
SMC 83202 | 864 | Small Magellanic Cloud | L/Teff | |
LMC 175746 | 863 | Large Magellanic Cloud | L/Teff | |
LMC207 | 863 | Large Magellanic Cloud | L/Teff | |
SP77 29-8 | 858 | Large Magellanic Cloud | L/Teff | |
SP77 54-38 | 859–911 | Large Magellanic Cloud | ||
LMC 174714 | 855–965 | Large Magellanic Cloud | ||
LMC 176135 | 854 | Large Magellanic Cloud | L/Teff | |
LMC178 | 845 | Large Magellanic Cloud | L/Teff | |
SP77 31-26 | 845 | Large Magellanic Cloud | L/Teff | |
LMC 106201 | 844 | Large Magellanic Cloud | L/Teff | |
SP77 48-13 | 838 | Large Magellanic Cloud | L/Teff | |
MSX LMC 1318 | 837 | Large Magellanic Cloud | L/Teff | |
SP77 28-13 | 835 | Large Magellanic Cloud | L/Teff | |
LMC 143898 | 833 | Large Magellanic Cloud | L/Teff | |
TYC 9161-866-1 | 833 | Large Magellanic Cloud | L/Teff | |
SMC 59803 | 829 | Small Magellanic Cloud | L/Teff | |
LMC 157401 | 828 | Large Magellanic Cloud | L/Teff | |
SP77 39-22 | 828 | Large Magellanic Cloud | L/Teff | |
WOH S52 | 828 | Large Magellanic Cloud | L/Teff | |
SP77 30-22 | 826 | Large Magellanic Cloud | L/Teff | |
LMC 145728 | 826 | Large Magellanic Cloud | L/Teff | |
LMC 169049 | 825 | Large Magellanic Cloud | L/Teff | |
SP77 46-34 | 825 | Large Magellanic Cloud | L/Teff | |
LMC 177997 | 825–867 | Large Magellanic Cloud | ||
SP77 28-2 | 825±60 | Large Magellanic Cloud | L/Teff | |
SP77 22-9 | 823 – 850 | Large Magellanic Cloud | L/Teff | |
Z Doradus | 824±108–956 | Large Magellanic Cloud | L/Teff | |
WOH S421 | 822–840 | Large Magellanic Cloud | ||
LMC 72727 | 822 | Large Magellanic Cloud | L/Teff | |
SP77 37-28 | 821 | Large Magellanic Cloud | L/Teff | |
MSX LMC 575 | 816–933 | Large Magellanic Cloud | ||
LMC 143035 | 815 | Large Magellanic Cloud | L/Teff | |
WOH S49 | 815 | Large Magellanic Cloud | L/Teff | |
SP77 52-28 | 812 | Large Magellanic Cloud | L/Teff | |
SHV 0520422-693821 | 808 | Large Magellanic Cloud | L/Teff | |
HD 268850 | 808–898 | Large Magellanic Cloud | ||
SMC 20133 | 809–835 | Small Magellanic Cloud | ||
SMC 25888 | 804 | Small Magellanic Cloud | L/Teff | |
SP77 55-20 | 803 | Large Magellanic Cloud | L/Teff | |
WOH G64 | ~800 | Large Magellanic Cloud | L/Teff | Surrounded by a large torus-shaped dust envelope. Transitioned from a red supergiant into a yellow hypergiant after a potential 30 year long outburst. Previously estimated to be 1,540 ± 77 R☉ |
PGMW 1058 | 800 | Large Magellanic Cloud | L/Teff | |
LMC 145112 | 798 | Large Magellanic Cloud | L/Teff | |
SMC 47757 | 795 | Small Magellanic Cloud | L/Teff | |
LMC 175709 | 794 | Large Magellanic Cloud | L/Teff | |
SMC 46497 | 794 | Small Magellanic Cloud | L/Teff | |
WOH S60 | 789 | Large Magellanic Cloud | L/Teff | |
WOH S102 | 789 | Large Magellanic Cloud | L/Teff | |
LMC 164709 | 787 | Large Magellanic Cloud | L/Teff | |
SP77 31-28 | 787 | Large Magellanic Cloud | L/Teff | |
TRM 73 | 787–816 | Large Magellanic Cloud | ||
SP77 31-21 | 784 | Large Magellanic Cloud | L/Teff | |
SMC 8930 | 784 | Small Magellanic Cloud | L/Teff | |
PMMR 62 | 784 | Small Magellanic Cloud | L/Teff | |
SP77 46-31 | 782 | Large Magellanic Cloud | L/Teff | |
LMC211 | 780 | Large Magellanic Cloud | L/Teff | |
LMC 140403 | 778 | Large Magellanic Cloud | L/Teff | |
LMC 134383 | 778–803 | Large Magellanic Cloud | L/Teff | |
SP77 47-11 | 778 | Large Magellanic Cloud | L/Teff | |
SP77 40-7 | 778 – 810 | Large Magellanic Cloud | L/Teff | |
W61 19–24 | 780+50 −70 |
Large Magellanic Cloud | L/Teff | |
WOH S28 | 780 | Large Magellanic Cloud | L/Teff | |
LMC 141568 | 776 | Large Magellanic Cloud | L/Teff | |
SP77 51-2 | 776 | Large Magellanic Cloud | L/Teff | |
SP77 31–43 | 773 | Large Magellanic Cloud | L/Teff | |
MSX LMC 833 | 773–849 | Large Magellanic Cloud | ||
SP77 52-32 | 772 | Large Magellanic Cloud | L/Teff | |
SP77 22-10 | 767 | Large Magellanic Cloud | L/Teff | |
SP77 48-6 | 768 | Large Magellanic Cloud | L/Teff | |
SMC 12322 | 765 | Small Magellanic Cloud | L/Teff | |
WOH S517 | 764 | Large Magellanic Cloud | L/Teff | |
WOH S183 | 763 | Large Magellanic Cloud | L/Teff | |
LMC256 | 762 | Large Magellanic Cloud | L/Teff | |
LMC 154311 | 762 | Large Magellanic Cloud | L/Teff | |
LMC 119219 | 762 | Large Magellanic Cloud | L/Teff | |
WOH S452 | 762±275 | Large Magellanic Cloud | L/Teff | |
MSX SMC 024 | 761 | Large Magellanic Cloud | L/Teff | |
WOH S282 | 758 | Large Magellanic Cloud | L/Teff | |
LMC 64048 | 758 | Large Magellanic Cloud | L/Teff | |
PGMW 3160 | 758 | Large Magellanic Cloud | L/Teff | |
WOH S438 | 757±211 | Large Magellanic Cloud | L/Teff | |
LMC 61753 | 755 | Large Magellanic Cloud | L/Teff | |
LMC 140296 | 754 | Large Magellanic Cloud | L/Teff | |
WOH S478 | 753 | Large Magellanic Cloud | L/Teff | |
LMC 139027 | 751 – 790 | Large Magellanic Cloud | L/Teff | |
SP77 45-16 | 749 – 800 | Large Magellanic Cloud | L/Teff | |
SP77 37-20 | 749 | Large Magellanic Cloud | L/Teff | |
SP77 54-27 | 750 – 758 – 800 | Large Magellanic Cloud | L/Teff | |
LMC 155529 | 747 | Large Magellanic Cloud | L/Teff | |
LMC 143877 | 746 | Large Magellanic Cloud | L/Teff | |
SMC 64663 | 745 | Small Magellanic Cloud | L/Teff | |
WOH G302 | 745 | Large Magellanic Cloud | L/Teff | |
TRM 65 | 743 | Large Magellanic Cloud | L/Teff | |
HV 12149 | 741–767 | Small Magellanic Cloud | ||
SMC 50840 | 740 | Small Magellanic Cloud | L/Teff | |
SMC 46662 | 740–874 | Small Magellanic Cloud | ||
SP77 29-11 | 738 | Large Magellanic Cloud | L/Teff | |
SMC 30616 | 737 | Small Magellanic Cloud | L/Teff | |
LMC 162635 | 736 | Large Magellanic Cloud | L/Teff | |
SP77 39-17 | 736 – 760 | Large Magellanic Cloud | L/Teff | |
LMC 163466 | 734 | Large Magellanic Cloud | L/Teff | |
HV 2310 | 734 | Large Magellanic Cloud | L/Teff | |
HD 269723 | 734±17, 814–829 | Large Magellanic Cloud | L/Teff | A yellow hypergiant. |
SP77 44-17 | 732 | Large Magellanic Cloud | L/Teff | |
SP77 38-5a | 732 | Large Magellanic Cloud | L/Teff | |
LMC 67982 | 730 | Large Magellanic Cloud | L/Teff | |
LHA 120-S 129 | 730 | Large Magellanic Cloud | L/Teff | |
PMMR 64 | 730+75 −65 |
Small Magellanic Cloud | L/Teff | |
SP77 51-15 | 727 | Large Magellanic Cloud | L/Teff | |
LMC 168757 | 725 | Large Magellanic Cloud | L/Teff | |
LMC 163007 | 725 | Large Magellanic Cloud | L/Teff | |
W61 8–14 | 724 | Large Magellanic Cloud | L/Teff | |
IRAS 05425-6914 | 724 | Large Magellanic Cloud | L/Teff | |
SMC 55188 | 724 | Small Magellanic Cloud | L/Teff | |
SP77 44-13 | 721 | Large Magellanic Cloud | L/Teff | |
MSX LMC 905 | 719 | Large Magellanic Cloud | L/Teff | |
LMC 147928 | 719 | Large Magellanic Cloud | L/Teff | |
LH 43-15 | 719 – 740 | Large Magellanic Cloud | L/Teff | |
PMMR 116 | 717 | Small Magellanic Cloud | L/Teff | |
LMC 123778 | 715 | Large Magellanic Cloud | L/Teff | |
WOH S314 | 714 | Large Magellanic Cloud | L/Teff | |
SP77 61-23 | 713 | Large Magellanic Cloud | L/Teff | |
WOH S230 | 713 | Large Magellanic Cloud | L/Teff | |
LMC 150396 | 710 | Large Magellanic Cloud | L/Teff | |
SP77 48-17 | 709 | Large Magellanic Cloud | L/Teff | |
LMC 165242 | 707 | Large Magellanic Cloud | L/Teff | |
SP77 51-19 | 707 | Large Magellanic Cloud | L/Teff | |
LMC 170539 | 707 | Large Magellanic Cloud | L/Teff | |
LMC 154729 | 705 | Large Magellanic Cloud | L/Teff | |
OGLE BRIGHT-LMC-LPV-101 | 703 | Large Magellanic Cloud | L/Teff | |
MSX SMC 055 | 702–1,557+215 −130 |
Small Magellanic Cloud | L/Teff | A super-AGB candidate. |
LMC 168290 | 702 | Large Magellanic Cloud | L/Teff | |
LMC180 | 702 | Large Magellanic Cloud | L/Teff | |
SP77 45-2 | 702 | Large Magellanic Cloud | L/Teff | |
SP77 48-6 | 700+29 −28 |
Large Magellanic Cloud | L/Teff | A yellow hypergiant. |
The following well-known stars are listed for the purpose of comparison. | ||||
HV 2112 | 675 – 1,193 | Small Magellanic Cloud | L/Teff | It has been previously considered to be a possible Thorne–Żytkow object. |
HV 11417 | 673–798 | Small Magellanic Cloud | L/Teff | Candidate Thorne-Zytkow object. |
HD 269953 | 647–720 | Large Magellanic Cloud | L/Teff | A yellow hypergiant. |
HD 271182 | 621 | Large Magellanic Cloud | L/Teff | A yellow hypergiant. |
HD 33579 | 471 | Large Magellanic Cloud | L/Teff | The brightest star in the Large Magellanic Cloud. |
S Doradus | 100 | Large Magellanic Cloud | L/Teff | A luminous blue variable in the S Doradus instability strip. |
HD 37974 | 99 | Large Magellanic Cloud | L/Teff | An unusual blue hypergiant with a large dusty disk. |
R136a1 | 42.7+1.6 −0.9 |
Large Magellanic Cloud | L/Teff | One of the most luminous and most massive stars. |
BAT 99-98 | 37.5 | Large Magellanic Cloud | L/Teff | One of the most luminous and most massive stars. |
HD 5980 A | 24 | Small Magellanic Cloud | L/Teff | A luminous blue variable and one of the most luminous stars. |
Andromeda (M31) and Triangulum (M33) galaxies
Star name | Solar radii (Sun = 1) |
Galaxy | Method | Notes |
---|---|---|---|---|
Theoretical limit of star size (M31) | ≳1,750 | L/Teff | Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of 3625 K. Reported for reference | |
LGGS J013339.28+303118.8 | 1,566 | Triangulum Galaxy | L/Teff | |
Theoretical limit of star size (M33) | ≳1,500 | L/Teff | Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of 3605 K. Reported for reference | |
LGGS J004428.48+415130.9 | 1,410 | Andromeda Galaxy | L/Teff | |
LGGS J013418.56+303808.6 | 1,363 | Triangulum Galaxy | L/Teff | |
LGGS J013414.27+303417.7 | 1,342–1,479 | Triangulum Galaxy | L/Teff | |
LGGS J004514.91+413735.0 | 1,324 | Andromeda Galaxy | L/Teff | |
LGGS J004125.23+411208.9 | 1,302 | Andromeda Galaxy | L/Teff | |
LGGS J013350.62+303230.3 | 1,283 | Triangulum Galaxy | L/Teff | |
LGGS J004312.43+413747.1 | 1,279 | Andromeda Galaxy | L/Teff | |
LGGS J003951.33+405303.7 | 1,272 | Andromeda Galaxy | L/Teff | |
LGGS J013416.52+305155.4 | 1,227 | Triangulum Galaxy | L/Teff | |
LGGS J004416.83+411933.2 | 1,209 | Andromeda Galaxy | L/Teff | |
LGGS J004531.13+414825.7 | 1,201 | Andromeda Galaxy | L/Teff | |
2MASS J01343365+3046547 | 1,196 | Triangulum Galaxy | L/Teff | |
LGGS J013409.63+303907.6 | 1,182 | Triangulum Galaxy | L/Teff | |
LGGS J004133.18+411217.2 | 1,180 | Andromeda Galaxy | L/Teff | |
LGGS J004455.90+413035.2 | 1,172 | Andromeda Galaxy | L/Teff | |
LGGS J013352.96+303816.0 | 1,163 | Andromeda Galaxy | L/Teff | |
LGGS J004047.22+404445.5 | 1,162 | Andromeda Galaxy | L/Teff | |
LGGS J004254.18+414033.6 | 1,154 | Andromeda Galaxy | L/Teff | |
LGGS J004428.48+415130.9 | 1,130 | Andromeda Galaxy | L/Teff | |
LGGS J013414.27+303417.7 | 1,129 | Triangulum Galaxy | L/Teff | |
LGGS J004035.08+404522.3 | 1,122 | Andromeda Galaxy | L/Teff | |
LGGS J013341.98+302102.0 | 1,119 | Triangulum Galaxy | L/Teff | |
LGGS J013307.37+304543.2 | 1,119 | Triangulum Galaxy | L/Teff | |
LGGS J004218.33+412633.9 | 1,111 | Andromeda Galaxy | L/Teff | |
LGGS J004102.54+403426.5 | 1,108 | Andromeda Galaxy | L/Teff | |
LGGS J013335.90+303344.5 | 1,104 | Triangulum Galaxy | L/Teff | |
LGGS J013358.54+303419.9 | 1,103 | Triangulum Galaxy | L/Teff | |
LGGS J013414.49+303511.6 | 1,102 | Triangulum Galaxy | L/Teff | |
LGGS J013336.64+303532.3 | 1,102–1,408 | Triangulum Galaxy | L/Teff | |
LGGS J004259.34+413726.0 | 1,094 | Andromeda Galaxy | L/Teff | |
LGGS J004509.98+414627.5 | 1,089 | Andromeda Galaxy | L/Teff | |
LGGS J013241.94+302047.5 | 1,083 | Triangulum Galaxy | L/Teff | |
LGGS J004034.74+404459.6 | 1,078 | Andromeda Galaxy | L/Teff | |
LGGS J004059.50+404542.6 | 1,071 | Andromeda Galaxy | L/Teff | |
LGGS J013430.75+303218.8 | 1,067 | Triangulum Galaxy | L/Teff | |
LGGS J013412.27+305314.1 | 1,063–1,066 | Triangulum Galaxy | L/Teff | |
LGGS J013328.17+304741.5 | 1,063 | Triangulum Galaxy | L/Teff | |
LGGS J004524.97+420727.2 | 1,059 | Andromeda Galaxy | L/Teff | |
LGGS J013233.77+302718.8 | 1,058–1,129 | Triangulum Galaxy | L/Teff | |
LGGS J004125.72+411212.7 | 1,058 | Andromeda Galaxy | L/Teff | |
LGGS J004114.18+403759.8 | 1,058 | Andromeda Galaxy | L/Teff | |
LGGS J013307.60+304259.0 | 1,051 | Triangulum Galaxy | L/Teff | |
LGGS J004103.67+410211.8 | 1,047 | Andromeda Galaxy | L/Teff | |
LGGS J013305.48+303138.5 | 1,046 | Triangulum Galaxy | L/Teff | |
LGGS J004442.41+412649.5 | 1,040 | Andromeda Galaxy | L/Teff | |
LGGS J013403.87+303753.2 | 1,040 | Triangulum Galaxy | L/Teff | |
LGGS J013351.47+303640.3 | 1,034 | Triangulum Galaxy | L/Teff | |
LGGS J004306.62+413806.2 | 1,028 | Andromeda Galaxy | L/Teff | |
LGGS J013303.54+303201.2 | 1,027–1,131 | Triangulum Galaxy | L/Teff | |
LGGS J004234.41+405855.9 | 1,023 | Andromeda Galaxy | L/Teff | |
LGGS J004051.31+404421.7 | 1,022 | Andromeda Galaxy | L/Teff | |
LGGS J004031.00+404311.1 | 1,011 | Andromeda Galaxy | L/Teff | |
LGGS J013406.20+303913.6 | 1,009 | Triangulum Galaxy | L/Teff | |
LGGS J013344.10+304425.1 | 1,007 | Triangulum Galaxy | L/Teff | |
LGGS J004307.36+405852.2 | 1,007 | Andromeda Galaxy | L/Teff | |
LGGS J013407.13+303929.5 | 994 | Triangulum Galaxy | L/Teff | |
LGGS J013312.35+303033.9 | 993 | Triangulum Galaxy | L/Teff | |
LGGS J013330.05+303145.9 | 988 | Triangulum Galaxy | L/Teff | |
LGGS J013350.84+304403.1 | 984 | Triangulum Galaxy | L/Teff | |
LGGS J013329.47+301848.3 | 981 | Triangulum Galaxy | L/Teff | |
LGGS J004148.74+410843.0 | 981 | Andromeda Galaxy | L/Teff | |
LGGS J004415.76+411750.7 | 977 | Andromeda Galaxy | L/Teff | |
LGGS J004127.44+411240.7 | 977 | Andromeda Galaxy | L/Teff | |
LGGS J013312.75+303946.1 | 975 | Triangulum Galaxy | L/Teff | |
LGGS J004027.36+410444.9 | 973 | Andromeda Galaxy | L/Teff | |
LGGS J013434.35+302627.3 | 973 | Triangulum Galaxy | L/Teff | |
LGGS J013423.29+305655.0 | 993–972 | Triangulum Galaxy | L/Teff | |
LGGS J013319.13+303642.5 | 970 | Triangulum Galaxy | L/Teff | |
LGGS J004305.77+410742.5 | 969 | Andromeda Galaxy | L/Teff | |
LGGS J013403.73+304202.4 | 965–1,032 | Triangulum Galaxy | L/Teff | |
LGGS J004346.10+411138.8 | 962 | Andromeda Galaxy | L/Teff | |
LGGS J004419.20+412343.7 | 959 | Andromeda Galaxy | L/Teff | |
LGGS J013353.91+302641.8 | 959–1,008 | Triangulum Galaxy | L/Teff | |
LGGS J013315.23+305329.0 | 958 | Triangulum Galaxy | L/Teff | |
LGGS J013315.23+305329.0 | 956 | Triangulum Galaxy | L/Teff | |
LGGS J004138.35+412320.7 | 954 | Andromeda Galaxy | L/Teff | |
LGGS J004419.45+411749.5 | 950 | Andromeda Galaxy | L/Teff | |
LGGS J013413.95+303339.6 | 948 | Triangulum Galaxy | L/Teff | |
LGGS J013336.42+303530.9 | 947 | Triangulum Galaxy | L/Teff | |
LGGS J004047.82+410936.4 | 943 | Andromeda Galaxy | L/Teff | |
LGGS J013258.18+303606.3 | 943 | Triangulum Galaxy | L/Teff | |
LGGS J004447.74+413050.0 | 938 | Andromeda Galaxy | L/Teff | |
2MASS J01343131+3046088 | 938 | Triangulum Galaxy | L/Teff | |
LGGS J004346.18+411515.0 | 936 | Andromeda Galaxy | L/Teff | |
LGGS J004304.62+410348.4 | 936 | Andromeda Galaxy | L/Teff | |
LGGS J004458.28+413154.3 | 933 | Andromeda Galaxy | L/Teff | |
LGGS J004102.82+410422.3 | 933 | Andromeda Galaxy | L/Teff | |
LGGS J013344.33+303636.0 | 932 | Triangulum Galaxy | L/Teff | |
LGGS J004631.49+421133.1 | 932 | Andromeda Galaxy | L/Teff | |
LGGS J013321.44+304045.4 | 932–1,015 | Triangulum Galaxy | L/Teff | |
LGGS J013358.04+304900.1 | 931 | Triangulum Galaxy | L/Teff | |
LGGS J013314.31+302952.9 | 1,067–930 | Triangulum Galaxy | L/Teff | |
LGGS J013315.97+303153.7 | 929 | Triangulum Galaxy | L/Teff | |
LGGS J004126.14+403346.5 | 927 | Andromeda Galaxy | L/Teff | |
LGGS J004347.31+411203.6 | 925 | Andromeda Galaxy | L/Teff | |
LGGS J004252.78+405627.5 | 923 | Andromeda Galaxy | L/Teff | |
LGGS J013411.54+303312.6 | 918 | Triangulum Galaxy | L/Teff | |
LGGS J013357.08+303817.8 | 918 | Triangulum Galaxy | L/Teff | |
LGGS J003943.89+402104.6 | 917 | Andromeda Galaxy | L/Teff | |
LGGS J004503.35+413026.3 | 916 | Andromeda Galaxy | L/Teff | |
LGGS J013338.97+303828.9 | 915 | Triangulum Galaxy | L/Teff | |
LGGS J013330.27+303510.6 | 915 | Triangulum Galaxy | L/Teff | |
LGGS J004033.06+404303.1 | 912 | Andromeda Galaxy | L/Teff | |
LGGS J004357.15+411136.6 | 911 | Andromeda Galaxy | L/Teff | |
LGGS J004406.60+411536.6 | 911 | Andromeda Galaxy | L/Teff | |
LGGS J013312.38+302453.2 | 911–952 | Triangulum Galaxy | L/Teff | |
LGGS J004451.76+420006.0 | 911 | Andromeda Galaxy | L/Teff | |
LGGS J013322.82+301910.9 | 934–911 | Triangulum Galaxy | L/Teff | |
LGGS J013355.56+304120.9 | 908 | Triangulum Galaxy | L/Teff | |
LGGS J004034.40+403627.4 | 907 | Andromeda Galaxy | L/Teff | |
LGGS J003910.56+402545.6 | 906 | Andromeda Galaxy | L/Teff | |
LGGS J004142.43+411814.1 | 906 | Andromeda Galaxy | L/Teff | |
LGGS J013316.57+303051.9 | 902 | Triangulum Galaxy | L/Teff | |
LGGS J013245.59+303518.7 | 900 | Triangulum Galaxy | L/Teff | |
LGGS J004034.67+404322.5 | 898 | Andromeda Galaxy | L/Teff | |
LGGS J004027.65+405126.7 | 898 | Andromeda Galaxy | L/Teff | |
LGGS J004322.75+411101.8 | 895 | Andromeda Galaxy | L/Teff | |
LGGS J004116.47+410813.7 | 895 | Andromeda Galaxy | L/Teff | |
LGGS J013306.33+303208.2 | 894 | Triangulum Galaxy | L/Teff | |
LGGS J004039.12+404252.3 | 894 | Andromeda Galaxy | L/Teff | |
LGGS J004433.96+415414.8 | 893 | Andromeda Galaxy | L/Teff | |
LGGS J013454.31+304109.8 | 891 | Triangulum Galaxy | L/Teff | |
LGGS J004030.64+404246.2 | 890 | Andromeda Galaxy | L/Teff | |
LGGS J004252.67+413615.2 | 889 | Andromeda Galaxy | L/Teff | |
LGGS J013349.94+302928.8 | 888 | Triangulum Galaxy | L/Teff | |
2MASS J01335010+3039106 | 886 | Triangulum Galaxy | L/Teff | |
LGGS J013357.37+304558.7 | 886 | Triangulum Galaxy | L/Teff | |
LGGS J013338.77+303532.9 | 885 | Triangulum Galaxy | L/Teff | |
LGGS J013359.20+303212.1 | 884 | Triangulum Galaxy | L/Teff | |
LGGS J013340.42+303131.3 | 880 | Triangulum Galaxy | L/Teff | |
LGGS J004511.40+413717.8 | 880 | Andromeda Galaxy | L/Teff | |
LGGS J013352.16+303902.2 | 880 | Triangulum Galaxy | L/Teff | |
LGGS J004219.25+405116.4 | 880 | Andromeda Galaxy | L/Teff | |
LGGS J004331.90+411145.0 | 880 | Andromeda Galaxy | L/Teff | |
2MASS J01333718+3038206 | 879 | Triangulum Galaxy | L/Teff | |
LGGS J013415.42+302816.4 | 876 | Triangulum Galaxy | L/Teff | |
LGGS J013345.01+302105.1 | 876 | Triangulum Galaxy | L/Teff | |
LGGS J004107.23+411636.8 | 870 | Andromeda Galaxy | L/Teff | |
LGGS J013417.83+303356.0 | 867 | Triangulum Galaxy | L/Teff | |
LGGS J004120.25+403838.1 | 867 | Andromeda Galaxy | L/Teff | |
LGGS J004402.38+412114.9 | 866 | Andromeda Galaxy | L/Teff | |
2MASS J01334194+3038565 | 866 | Triangulum Galaxy | L/Teff | |
LGGS J013309.10+303017.8 | 865–933 | Triangulum Galaxy | L/Teff | |
LGGS J004429.36+412307.8 | 862 | Andromeda Galaxy | L/Teff | |
LGGS J013310.20+303314.4 | 861 | Triangulum Galaxy | L/Teff | |
LGGS J004404.60+412729.8 | 860 | Andromeda Galaxy | L/Teff | |
LGGS J003907.69+402859.5 | 860 | Andromeda Galaxy | L/Teff | |
LGGS J004219.64+412736.1 | 859 | Andromeda Galaxy | L/Teff | |
LGGS J003949.31+402049.1 | 859 | Andromeda Galaxy | L/Teff | |
LGGS J013310.16+302726.3 | 855 | Triangulum Galaxy | L/Teff | |
LGGS J004036.97+403412.4 | 855 | Andromeda Galaxy | L/Teff | |
LGGS J013343.68+304450.7 | 855 | Triangulum Galaxy | L/Teff | |
LGGS J013409.10+303351.8 | 854 | Triangulum Galaxy | L/Teff | |
LGGS J013407.11+303918.7 | 854 | Triangulum Galaxy | L/Teff | |
LGGS J004107.11+411635.6 | 854 | Andromeda Galaxy | L/Teff | |
LGGS J013400.01+304622.2 | 852 | Triangulum Galaxy | L/Teff | |
LGGS J013327.14+303917.4 | 851 | Andromeda Galaxy | L/Teff | |
LGGS J013339.79+304032.2 | 850 | Triangulum Galaxy | L/Teff | |
LGGS J004501.30+413922.5 | 850 | Andromeda Galaxy | L/Teff | |
LGGS J004450.87+412924.3 | 850 | Andromeda Galaxy | L/Teff | |
LGGS J004040.69+405908.1 | 850 | Andromeda Galaxy | L/Teff | |
LGGS J003942.92+402051.1 | 850 | Andromeda Galaxy | L/Teff | |
2MASS J01335092+3040481 | 850 | Triangulum Galaxy | L/Teff | |
LGGS J013315.19+305319.8 | 847 | Triangulum Galaxy | L/Teff | |
LGGS J013416.89+305158.3 | 845–920 | Triangulum Galaxy | L/Teff | |
LGGS J004415.17+415640.6 | 845 | Andromeda Galaxy | L/Teff | |
LGGS J004424.94+412322.3 | 844 | Andromeda Galaxy | L/Teff | |
LGGS J013331.93+301952.9 | 838 | Triangulum Galaxy | L/Teff | |
LGGS J004406.16+414846.4 | 836 | Andromeda Galaxy | L/Teff | |
LGGS J013445.65+303235.4 | 835 | Triangulum Galaxy | L/Teff | |
LGGS J004109.39+404901.9 | 834 | Andromeda Galaxy | L/Teff | |
LGGS J004423.83+414928.6 | 833 | Andromeda Galaxy | L/Teff | |
LGGS J013242.31+302113.9 | 833 | Triangulum Galaxy | L/Teff | |
LGGS J004030.48+404051.1 | 833 | Andromeda Galaxy | L/Teff | |
LGGS J004118.29+404940.3 | 832 | Andromeda Galaxy | L/Teff | |
LGGS J013414.17+304701.9 | 831 | Triangulum Galaxy | L/Teff | |
LGGS J013328.89+303058.0 | 831 | Triangulum Galaxy | L/Teff | |
LGGS J004107.70+403702.3 | 831 | Andromeda Galaxy | L/Teff | |
LGGS J003925.67+404111.8 | 831 | Andromeda Galaxy | L/Teff | |
LGGS J004306.95+410038.2 | 826 | Andromeda Galaxy | L/Teff | |
LGGS J013408.81+304637.8 | 826 | Triangulum Galaxy | L/Teff | |
LGGS J013345.22+303138.2 | 826 | Triangulum Galaxy | L/Teff | |
LGGS J003950.65+402531.8 | 825 | Andromeda Galaxy | L/Teff | |
LGGS J013427.65+305642.4 | 825 | Triangulum Galaxy | L/Teff | |
LGGS J013500.04+303703.8 | 823 | Triangulum Galaxy | L/Teff | |
LGGS J004108.42+410655.3 | 822 | Andromeda Galaxy | L/Teff | |
LGGS J013340.77+302108.7 | 821–820 | Triangulum Galaxy | L/Teff | |
LGGS J004458.57+412925.1 | 821 | Andromeda Galaxy | L/Teff | |
LGGS J013309.97+302727.5 | 973 | Triangulum Galaxy | L/Teff | |
LGGS J004124.81+411206.1 | 819 | Andromeda Galaxy | L/Teff | |
LGGS J013401.65+303128.7 | 819 | Triangulum Galaxy | L/Teff | |
LGGS J013455.65+304349.0 | 816 | Triangulum Galaxy | L/Teff | |
LGGS J013310.60+302301.8 | 816 | Triangulum Galaxy | L/Teff | |
LGGS J004544.71+414331.9 | 815 | Andromeda Galaxy | L/Teff | |
LGGS J004119.35+410836.4 | 813 | Andromeda Galaxy | L/Teff | |
LGGS J013436.65+304517.1 | 814–812 | Triangulum Galaxy | L/Teff | |
LGGS J013301.79+303954.3 | 812 | Triangulum Galaxy | L/Teff | |
LGGS J013328.85+310041.7 | 810–909 | Triangulum Galaxy | L/Teff | |
LGGS J013401.08+303432.2 | 809 | Triangulum Galaxy | L/Teff | |
LGGS J004036.45+403613.1 | 808 | Andromeda Galaxy | L/Teff | |
LGGS J004521.53+413758.6 | 807 | Andromeda Galaxy | L/Teff | |
LGGS J004432.38+415149.9 | 807 | Andromeda Galaxy | L/Teff | |
LGGS J013306.95+303506.1 | 807 | Triangulum Galaxy | L/Teff | Contradictory classification in literature, it has been considered a candidate LBV, a RSG or a BSG. |
LGGS J013242.26+302114.1 | 807 | Triangulum Galaxy | L/Teff | |
LGGS J013321.94+304112.0 | 806–829 | Triangulum Galaxy | L/Teff | |
LGGS J013304.56+303043.2 | 804 | Triangulum Galaxy | L/Teff | |
LGGS J004331.73+414223.0 | 803 | Andromeda Galaxy | L/Teff | |
LGGS J004044.17+410729.0 | 803 | Andromeda Galaxy | L/Teff | |
LGGS J013352.83+305605.2 | 803 | Triangulum Galaxy | L/Teff | |
LGGS J013343.30+303318.9 | 873–803 | Triangulum Galaxy | L/Teff | |
LGGS J013342.61+303534.7 | 800 | Triangulum Galaxy | L/Teff | |
LGGS J013326.90+310054.2 | 800–909 | Triangulum Galaxy | L/Teff | |
LGGS J013300.94+303404.3 | 798 | Triangulum Galaxy | L/Teff | |
LGGS J013416.06+303730.0 | 798 | Triangulum Galaxy | L/Teff | |
LGGS J004503.83+413737.0 | 797 | Andromeda Galaxy | L/Teff | |
LGGS J004503.83+413737.0 | 797 | Andromeda Galaxy | L/Teff | |
LGGS J004438.83+415253.0 | 794 | Andromeda Galaxy | L/Teff | |
LGGS J004235.88+405442.2 | 794 | Andromeda Galaxy | L/Teff | |
LGGS J004335.28+410959.7 | 794 | Andromeda Galaxy | L/Teff | |
LGGS J013402.32+303828.4 | 793 | Triangulum Galaxy | L/Teff | |
LGGS J004125.55+405034.8 | 792 | Andromeda Galaxy | L/Teff | |
LGGS J013507.43+304132.6 | 791 | Triangulum Galaxy | L/Teff | |
LGGS J013353.25+303918.7 | 791 | Triangulum Galaxy | L/Teff | |
LGGS J004308.71+410604.5 | 790 | Andromeda Galaxy | L/Teff | |
LGGS J013417.17+304826.6 | 789 | Triangulum Galaxy | L/Teff | |
LGGS J013310.71+302714.9 | 789–884 | Triangulum Galaxy | L/Teff | |
LGGS J013432.36+304159.0 | 788 | Triangulum Galaxy | L/Teff | |
LGGS J004356.23+414641.8 | 788 | Andromeda Galaxy | L/Teff | |
LGGS J013340.77+302108.7 | 788 | Triangulum Galaxy | L/Teff | |
LGGS J013346.61+304125.4 | 786 | Triangulum Galaxy | L/Teff | |
LGGS J004447.08+412801.7 | 785 | Andromeda Galaxy | L/Teff | |
LGGS J004255.95+404857.5 | 785 | Andromeda Galaxy | L/Teff | |
LGGS J013231.91+302329.1 | 783 | Triangulum Galaxy | L/Teff | |
LGGS J004110.32+410433.4 | 782 | Andromeda Galaxy | L/Teff | |
LGGS J004159.06+405718.7 | 780 | Andromeda Galaxy | L/Teff | |
LGGS J004241.10+413142.3 | 775 | Andromeda Galaxy | L/Teff | |
LGGS J013401.88+303858.3 | 776 | Triangulum Galaxy | L/Teff | |
LGGS J013445.12+305858.9 | 773 | Triangulum Galaxy | L/Teff | |
LGGS J004030.92+404329.3 | 773 | Andromeda Galaxy | L/Teff | |
LGGS J013359.57+303413.5 | 771 | Triangulum Galaxy | L/Teff | |
LGGS J004353.97+411255.6 | 771 | Andromeda Galaxy | L/Teff | |
LGGS J004029.03+403412.6 | 770 | Andromeda Galaxy | L/Teff | |
LGGS J004526.24+420047.5 | 767 | Andromeda Galaxy | L/Teff | |
LGGS J013348.44+302029.8 | 767 | Triangulum Galaxy | L/Teff | |
LGGS J004552.15+421003.5 | 767 | Andromeda Galaxy | L/Teff | |
LGGS J013320.75+303204.8 | 764 | Triangulum Galaxy | L/Teff | |
LGGS J013416.28+303353.5 | 763–801 | Triangulum Galaxy | L/Teff | |
LGGS J013357.91+303338.9 | 763 | Triangulum Galaxy | L/Teff | |
LGGS J013253.14+303515.3 | 762 | Triangulum Galaxy | L/Teff | |
LGGS J004051.18+403053.4 | 762 | Andromeda Galaxy | L/Teff | |
LGGS J013402.57+303746.3 | 762 | Triangulum Galaxy | L/Teff | |
LGGS J013352.15+304006.4 | 762 | Triangulum Galaxy | L/Teff | |
LGGS J004427.07+415203.0 | 762 | Andromeda Galaxy | L/Teff | |
LGGS J004233.23+405917.0 | 762 | Andromeda Galaxy | L/Teff | |
LGGS J004156.96+405720.8 | 761 | Andromeda Galaxy | L/Teff | |
LGGS J004117.14+410843.7 | 761 | Andromeda Galaxy | L/Teff | |
LGGS J004124.80+411634.7 | 760, 1,205, 1,240 | Andromeda Galaxy | L/Teff | |
LGGS J004109.61+404920.4 | 761 | Andromeda Galaxy | L/Teff | |
LGGS J003930.09+402313.0 | 759 | Andromeda Galaxy | L/Teff | |
LGGS J013324.71+303423.7 | 758 | Triangulum Galaxy | L/Teff | |
LGGS J013317.40+303210.8 | 758 | Triangulum Galaxy | L/Teff | |
LGGS J013411.83+304631.0 | 756 | Triangulum Galaxy | L/Teff | |
LGGS J004417.75+420039.1 | 755 | Andromeda Galaxy | L/Teff | |
LGGS J004454.50+413007.8 | 755 | Andromeda Galaxy | L/Teff | |
LGGS J013348.77+304526.8 | 754 | Triangulum Galaxy | L/Teff | |
LGGS J004019.69+404912.2 | 754 | Andromeda Galaxy | L/Teff | |
LGGS J004340.32+411157.1 | 753 | Andromeda Galaxy | L/Teff | |
LGGS J013304.02+303215.2 | 753 | Triangulum Galaxy | L/Teff | |
LGGS J013409.16+303846.9 | 752 | Triangulum Galaxy | L/Teff | |
LGGS J013459.81+304156.9 | 751–765 | Triangulum Galaxy | L/Teff | |
LGGS J013334.82+302029.1 | 751–930 | Triangulum Galaxy | L/Teff | |
LGGS J013400.71+303422.3 | 750 | Triangulum Galaxy | L/Teff | |
LGGS J004224.65+412623.7 | 749 | Andromeda Galaxy | L/Teff | |
LGGS J013414.88+303401.2 | 749 | Triangulum Galaxy | L/Teff | |
LGGS J004343.33+414529.5 | 749 | Andromeda Galaxy | L/Teff | |
LGGS J004034.76+403648.9 | 749 | Andromeda Galaxy | L/Teff | |
LGGS J013353.53+303418.7 | 749 | Triangulum Galaxy | L/Teff | |
LGGS J004501.84+420259.2 | 747 | Andromeda Galaxy | L/Teff | |
LGGS J013409.70+303916.2 | 744 | Triangulum Galaxy | L/Teff | |
LGGS J013345.71+303609.8 | 744 | Triangulum Galaxy | L/Teff | |
LGGS J004342.75+411442.8 | 743 | Andromeda Galaxy | L/Teff | |
LGGS J013333.32+303147.2 | 741 | Triangulum Galaxy | L/Teff | |
LGGS J013338.97+303506.1 | 741 | Triangulum Galaxy | L/Teff | |
LGGS J013303.61+302841.5 | 741 | Triangulum Galaxy | L/Teff | |
LGGS J004201.12+412516.0 | 737 | Andromeda Galaxy | L/Teff | |
LGGS J004341.35+411213.8 | 734 | Andromeda Galaxy | L/Teff | |
LGGS J013438.76+304608.1 | 734 | Triangulum Galaxy | L/Teff | |
LGGS J013402.33+301749.2 | 734–786 | Triangulum Galaxy | L/Teff | |
2MASS J01334180+3040207 | 732 | Triangulum Galaxy | L/Teff | |
LGGS J013354.32+301724.6 | 732–854 | Triangulum Galaxy | L/Teff | |
LGGS J013334.23+303400.3 | 732 | Triangulum Galaxy | L/Teff | |
LGGS J013357.60+304113.3 | 730 | Triangulum Galaxy | L/Teff | |
LGGS J004614.57+421117.4 | 730 | Andromeda Galaxy | L/Teff | |
LGGS J004120.96+404125.3 | 730 | Andromeda Galaxy | L/Teff | |
LGGS J004228.46+405519.0 | 728 | Andromeda Galaxy | L/Teff | |
LGGS J004024.52+404444.8 | 728 | Andromeda Galaxy | L/Teff | |
LGGS J013349.75+304459.8 | 727 | Triangulum Galaxy | L/Teff | |
LGGS J013306.88+303004.6 | 727 | Triangulum Galaxy | L/Teff | |
LGGS J004358.00+412114.1 | 727 | Andromeda Galaxy | L/Teff | |
LGGS J004147.27+411537.8 | 727 | Andromeda Galaxy | L/Teff | |
LGGS J013407.23+304158.8 | 725–833 | Triangulum Galaxy | L/Teff | |
LGGS J004519.82+415531.9 | 725 | Andromeda Galaxy | L/Teff | |
LGGS J004410.84+411538.8 | 725 | Andromeda Galaxy | L/Teff | |
LGGS J013407.38+305935.0 | 724 | Triangulum Galaxy | L/Teff | |
LGGS J004438.75+415553.6 | 724 | Andromeda Galaxy | L/Teff | |
LGGS J004324.16+411228.3 | 723 | Andromeda Galaxy | L/Teff | |
LGGS J004059.58+403815.6 | 723 | Andromeda Galaxy | L/Teff | |
LGGS J013327.40+304126.4 | 721 | Triangulum Galaxy | L/Teff | |
LGGS J013243.72+301912.5 | 721–783 | Triangulum Galaxy | L/Teff | |
Gaia DR3 303379932695513216 | 720 | Triangulum Galaxy | L/Teff | |
LGGS J004558.92+414642.1 | 720 | Andromeda Galaxy | L/Teff | |
LGGS J004103.46+403633.2 | 717 | Andromeda Galaxy | L/Teff | |
LGGS J013324.89+301754.3 | 717 | Triangulum Galaxy | L/Teff | |
LGGS J004015.18+405947.7 | 716 | Andromeda Galaxy | L/Teff | |
LGGS J013414.53+303557.7 | 715 | Triangulum Galaxy | L/Teff | |
LGGS J013351.89+303853.5 | 715 | Triangulum Galaxy | L/Teff | |
LGGS J004458.82+413050.4 | 715 | Andromeda Galaxy | L/Teff | |
LGGS J013352.51+303942.2 | 715 | Triangulum Galaxy | L/Teff | |
LGGS J004124.91+411133.1 | 715 | Andromeda Galaxy | L/Teff | |
LGGS J004604.18+415135.4 | 713 | Andromeda Galaxy | L/Teff | |
LGGS J013305.17+303119.8 | 711 | Triangulum Galaxy | L/Teff | |
LGGS J004517.25+413948.2 | 711 | Andromeda Galaxy | L/Teff | |
LGGS J013349.86+303246.1 | 710–795 | Triangulum Galaxy | L/Teff | A yellow supergiant. |
2MASS J01335929+3034435 | 709 | Triangulum Galaxy | L/Teff | |
LGGS J004230.32+405624.1 | 708 | Andromeda Galaxy | L/Teff | |
LGGS J004101.02+403506.1 | 708 | Andromeda Galaxy | L/Teff | |
LGGS J004119.21+411237.2 | 707 | Andromeda Galaxy | L/Teff | |
LGGS J004606.25+415018.9 | 707 | Andromeda Galaxy | L/Teff | |
LGGS J013442.05+304540.2 | 707–707 | Triangulum Galaxy | L/Teff | |
LGGS J013431.84+302721.5 | 707–717 | Triangulum Galaxy | L/Teff | |
LGGS J013304.68+304456.0 | 707–739 | Triangulum Galaxy | L/Teff | |
LGGS J004432.27+415158.4 | 705 | Andromeda Galaxy | L/Teff | |
2MASS J01335131+3039149 | 704 | Triangulum Galaxy | L/Teff | |
LGGS J013339.46+302113.0 | 703–748 | Triangulum Galaxy | L/Teff | |
LGGS J003935.36+401946.4 | 703 | Andromeda Galaxy | L/Teff | |
LGGS J013343.03+303433.5 | 702 | Triangulum Galaxy | L/Teff | |
LGGS J004505.87+413452.3 | 702 | Andromeda Galaxy | L/Teff | |
LGGS J013414.18+305248.0 | 701–731 | Triangulum Galaxy | L/Teff | |
LGGS J013402.53+304107.7 | 701–749 | Triangulum Galaxy | L/Teff | |
LGGS J013340.80+304248.5 | 701–814 | Triangulum Galaxy | L/Teff | |
LGGS J013312.59+303252.5 | 701 | Triangulum Galaxy | L/Teff | |
The following well-known stars are listed for the purpose of comparison. | ||||
Var 83 | 150 | Triangulum Galaxy | L/Teff | A luminous blue variable and one of the most luminous stars in M33. |
Other galaxies (within the Local Group)
Star name | Solar radii (Sun = 1) |
Galaxy | Method | Notes |
---|---|---|---|---|
Sextans A 10 | 995±130 | Sextans A | L/Teff | |
NGC 6822-RSG 19 | 930 | NGC 6822 | L/Teff | |
WLM 02 | 883+284 −167 |
WLM | L/Teff | |
Sextans A 5 | 870±145 | Sextans A | L/Teff | |
NGC 6822-RSG 26 | 868 | NGC 6822 | L/Teff | |
NGC 6822-RSG 12 | 839 | NGC 6822 | L/Teff | |
Leo A 7 | 785 | Leo A | L/Teff | |
NGC 6822-RSG 9 | 765 | NGC 6822 | L/Teff | |
NGC 6822-RSG 6 | 714 | NGC 6822 | L/Teff | |
Sextans A 7 | 710±100 | Sextans A | L/Teff | |
The following well-known stars are listed for the purpose of comparison. | ||||
NGC 6822-WR 12 | 3.79 | NGC 6822 | L/Teff | A Wolf-Rayet star, one of the hottest known stars. |
Outside the Local Group (inside the Virgo supercluster)
Star name | Solar radii (Sun = 1) |
Galaxy | Group | Method | Notes |
---|---|---|---|---|---|
NGC 1313-310 | 1,668+168 −190 |
NGC 1313 | [TSK2008] 236 | L/Teff | Luminosity has not yet been constrained well enough yet to confirm its extreme properties, and further observations are needed to show that it is a single, uncontaminated star. Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-125 | 1,504+176 −157 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 247-154 | 1,503+79 −75 |
NGC 247 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 7793-34 | 1,392+157 −160 |
NGC 7793 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 55-40 | 1,286 −106 |
NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 2403 V14 | 1,260 | NGC 2403 | M81 Group | L/Teff | A F-type luminous blue variable. |
NGC 300-154 | 1,200 −111 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-114 | 1,181 −111 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-199 | 1,181 −109 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-153 | 1,173 −109 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-150 | 1,167 −107 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 253-2006 | 1,167 −70 |
Sculptor Galaxy | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
SPIRITS 14atl | 1,134–1,477 | Messier 83 | Centaurus A/M83 Group | L/Teff | |
NGC 300-59 | 1,133 −129 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 7793-86 | 1,127 −109 |
NGC 7793 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-263 | 1,108 −102 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 247-447 | 1,101 −56 |
NGC 247 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
SPIRITS 15ahp | 1,098 | NGC 2403 | M81 Group | L/Teff | |
NGC 300-240 | 1,088 −101 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 7793-86 | 1,078 −64 |
NGC 7793 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-173 | 1,063 −77 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-340 | 1,036 −95 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-346 | 1,023 −128 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 247-533 | 1,004 −62 |
NGC 247 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-351 | 992 −102 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-524 | 987 −72 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 55-135 | 964 −89 |
NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 55-93 | 955 −47 |
NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 7793-539 | 948 | NGC 7793 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 55-87 | 948 −98 |
NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 55-146 | 921 −46 |
NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-273 | 921 −85 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-186 | 915 −65 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 55-200 | 905 −55 |
NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 55-152 | 895 −54 |
NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-413 | 861 −61 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 55-174 | 856 −61 |
NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
M81 10584-25-2 | 851 | Messier 81 | M81 Group | L/Teff | |
M81 10584-13-3 | 843 | Messier 81 | M81 Group | L/Teff | |
NGC 55-75 | 836 −111 |
NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-545 | 824 −93 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 247-2912 | 821 −51 |
NGC 247 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 55-216 | 801 −89 |
NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 247-1471 | 798 −48 |
NGC 247 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-499 | 796 −108 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-379 | 744 −52 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-838 | 744 −53 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 55-149 | 738 −55 |
NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 55-194 | 730 −44 |
NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
[GKE2015] 7 | 729 | NGC 300 | NGC 55 Group | L/Teff | |
NGC 55-270 | 728 −36 |
NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-1047 | 724 −59 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 247-3231 | 719 −51 |
NGC 247 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 247-2966 | 719 −52 |
NGC 247 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 55-245 | 717 −50 |
NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-1068 | 716 −58 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
NGC 300-1081 | 712 −51 |
NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius. |
The following well-known stars are listed for the purpose of comparison. | |||||
NGC 2363-V1 | 194–356 | NGC 2366 | M81 Group | L/Teff | |
[HMR2016] N4038 13068 | 124-885 | NGC 4038 | NGC 4038 Group | L/Teff | |
[HMR2016] N4038 46842 | 88-815 | NGC 4038 | NGC 4038 Group | L/Teff |
Outside the Virgo supercluster
Note that this list does not include the candidate JWST dark stars, with estimated radii of up to 61 astronomical units (13,000 R☉) or Quasi-stars, with theoretical models suggesting that they could reach radii of up to 40,700 solar radii (189 au).
Star name | Solar radii (Sun = 1) |
Galaxy | Group | Method | Notes |
---|---|---|---|---|---|
Quyllur | 965 | ACT-CL J0102-4915 | L/Teff | Likely the first red supergiant star at cosmological distances and is also discovered by James Webb Space Telescope. | |
The following well-known stars are listed for the purpose of comparison. | |||||
Godzilla | 430–2,365 | Sunburst galaxy | PSZ1 G311.65-18.48 | L/Teff | The most luminous known star. |
Mothra | 271 | LS1 | MACS J0416.1-2403 | L/Teff | A binary star at cosmological distances. |
Transient events
During some transient events, such as red novae or LBV eruptions the star's radius can increase by a significant amount.
Star or transient event name | Solar radii (Sun = 1) |
Year | Galaxy | Group | Method | Notes |
---|---|---|---|---|---|---|
AT 2017jfs | >33,000 | 2017 | NGC 4470 | L/Teff | ||
SNhunt151 | 16,700 | 2014 | UGC 3165 | LDC 331 | L/Teff | |
SN 2015bh | 16,400±2,600 | 2015 | NGC 2770 | LDC 616 | L/Teff | |
AT 2018hso | 10,350 | 2018 | NGC 3729 | M109 Group | L/Teff | |
AT 2023clx | 6,800 | 2023 | NGC 3799 | nest 101314 | L/Teff | |
M51 OT2019-1 | 5,500 | 2019 | Whirlpool Galaxy | M51 Group | L/Teff | |
η Carinae | 4,319 – 6,032 | 1845 | Milky Way | Local Group | L/Teff | During the outburst, the star became the second brightest star in sky, reaching an apparent magnitude of between −0.8 and −1.0. |
AT 2010dn | 4,130 | 2010 | NGC 3180 | LDC 743 | L/Teff | |
SN 2011fh | 3,980 | 2011 | NGC 4806 | Abell 3528 | L/Teff | |
AT 2014ej | 3,600 | 2014 | NGC 7552 | Grus Quartet | L/Teff | |
V838 Monocerotis | 3,190 | 2002 | Milky Way | Local Group | L/Teff | |
SN2008S | 3,020 | 2008 | NGC 6946 | NGC 6946 Group | L/Teff | |
SNhunt120 | 2,900 | 2012 | NGC 5775 | Virgo Cluster | L/Teff | |
AT 2017be | 2,000 | 2017 | NGC 2537 | L/Teff | ||
PHL 293B star | 1,348 – 1,463 | 2002 | PHL 293B | L/Teff | ||
SNhunt248 | ~850 | 2014 | NGC 5806 | NGC 5846 Group | L/Teff | |
R71 | 500 | 2012 | Large Magellanic Cloud | Local Group | L/Teff | |
SN 2000ch | 500 | 2000 | NGC 3432 | LDC 743 | L/Teff | |
Godzilla | 430 – 2,365 | 2015 | Sunburst galaxy | ? | ||
AT 2016blu | ~330 | 2012 – 2022 | NGC 4559 | Coma I Group | L/Teff | 19 outbursts were detected between 2012 and 2022. The star was likely relatively stable the decade before since no outbursts were detected from 1999 – 2009. |
SN Progenitors
Star or supernova name | Solar radii (Sun = 1) |
Year | Galaxy | Group | Method | Notes |
---|---|---|---|---|---|---|
SN 2020faa | 1,000 | 2020 | 2MASS J14470904+7244157 | L/Teff | ||
SN 2023ixf | 912+227 −222–1,060±30 |
2023 | Pinwheel galaxy | M101 Group | L/Teff | |
SN 2020jfo | 700±10 | 2020 | Messier 61 | Virgo Cluster | L/Teff | |
SN 2023axu | 417±28 | 2023 | NGC 2283 | L/Teff | ||
SN 2021agco | 78.37+25.59 −19.94 |
2021 | UGC 3855 | LDC 506 | L/Teff | Nearest ultrastripped supernova known. |
Largest stars by apparent size
The following list include the largest stars by their apparent size (angular diameter) as seen from Earth. The unit of measurement is the milliarcsecond (mas), equivalent to 10×10 arcseconds. Stars with angular diameters larger than 13 milliarcseconds are included.
Name | Angular diameter (mas) |
Angular diameter type | Distance (light-years) |
Spectral type | Notes |
---|---|---|---|---|---|
Sun | 2,000,000 | 0.000016 | G2V | The largest star by angular diameter. | |
R Doradus | 51.18±1.24 | LD |
179±10 |
M8III:e | The largest star by angular diameter apart from the Sun. |
Betelgeuse (α Orionis) |
42.28±0.43 | LD |
408–540 |
M1-M2Ia-Iab | |
Antares (α Scorpii A) |
37.31±0.09 | LD | 553.5±93.9 | M1.5Iab | |
Mira (ο Ceti) |
28.9±0.3 – 34.9±0.4 | Ross | 299±33 | M5-M9IIIe | The angular diameter vary during Mira's pulsations. |
Gacrux (γ Crucis) |
24.7 | ? | 88.6±0.4 | M3.5III | |
Rasalgethi (α Herculis) |
23.95±5.03 | Est | 359±52 | M5Ib-II | |
R Hydrae | 23.7±1 | ? | 482±33 | M6-9e | |
Arcturus (α Boötis) |
21.06±0.17 | LD | 36.8 | K1.5IIIFe-0.5 | |
π Gruis | 21 | ? | 535 | S5,7 | |
Aldebaran (α Tauri) |
20.58–21.1 | LD | 65.3±1 | K5+III | |
GY Aquilae | 20.46 | ? | 1108±98 | M8 | |
R Lyrae | 18.016±0.224 | LD | 310 −7 |
M4.5III | |
Scheat (β Pegasi) |
16.75±0.24 | Ross | 196±2 | M2.5II-III | |
Gorgonea Tertia (ρ Persei) |
16.555±0.166 | LD | 308±7 | M4+IIIa | |
SW Virginis | 16.11±0.13–16.8±0.34 | UD | 527±46.9 | M7III: | |
R Aquarii | 15.61±0.8 – 16.59±1.03 | LD | 711 −36 |
M6.5–M8.5e | |
g Herculis | 15.2±0.5 – 19.09±0.19 | LD | 385±10 | M6-III | |
RS Cancri | 15.1±0.5 – 17.2±0.4 | LD | 490±40 | M6S | |
Tejat (μ Geminorum) |
15.118±0.151 | LD | 230±10 | M3IIIab | |
R Leonis Minoris | 14.4±0.87 | LD | 942 −47 |
M6.5-9e | |
S Cephei | 14.29±2.28 | LD | 1591 −46 |
C7,3e | |
T Cassiopeiae | 14.22±0.73 | LD | 893 −46 |
M7-9e | |
μ Cephei (Herschel's Garnet Star) | 14.11 ± 0.6 | 3060 −130 |
M2Ia | ||
Mirach (β Andromedae) |
13.749±0.137 | LD | 199±9 | M0+IIIa | |
Menkar (α Ceti) |
13.238±0.056 | LD | 249±8 | M1.5IIIa | Other measurements include 12.2±0.04 mas. |
V Cygni | 13.1±0.208 – 14.84±2.37 | LD | 1747 −137 |
C7,4eJ |
See also
- Constellation
- Lists of stars
- List of most massive stars
- List of most luminous stars
- List of hottest stars
- List of coolest stars
- List of smallest known stars
- List of most massive black holes
- List of largest nebulae
- List of largest galaxies
- List of largest cosmic structures
- List of largest exoplanets
- List of star extremes
- Star
Notes
- ^ Methods for calculating the radius:
- AD: radius calculated from angular diameter and distance
- L/Teff: radius calculated from bolometric luminosity and effective temperature
- SEIS: radius obtained from seismic data
- OD: radius obtained from optical depth
- ^ At the J2000 epoch
- ^ Using an angular diameter of 7.8±0.64 milliarcseconds and a distance of 1610+130
−110 parsecs. - ^ Using an angular diameter of 14.11±0.6 milliarcseconds and a distance of 940+140
−40 parsecs. - ^ Luminosities are calculated using the apparent bolometric magnitude and distances in the following equation:
10 - ^ Calculated using a distance of 432 parsecs and an angular diameter of 2.31 milliarcseconds.
- ^ Legend:
UD=Uniform disk diameter
LD=Limb-darkened diameter
Ross=Rosseland diameter
Est = Estimated using distance and physical radius
References
- ^ Mamajek, E. E.; Prsa, A.; Torres, G.; Harmanec, P.; Asplund, M.; Bennett, P. D.; Capitaine, N.; Christensen-Dalsgaard, J.; Depagne, E.; Folkner, W. M.; Haberreiter, M. (October 2015). "IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties". arXiv:1510.07674 [astro-ph.SR].
- ^ Rau, A.; Kulkarni, S. R.; Ofek, E. O.; Yan, L. (2007). "Spitzer Observations of the New Luminous Red Nova M85 OT2006-1". The Astrophysical Journal. 659 (2): 1536–1540. arXiv:astro-ph/0612161. Bibcode:2007ApJ...659.1536R. doi:10.1086/512672. S2CID 8913778.
- ^ Haemmerlé, Lionel; Woods, T. E.; Klessen, Ralf S.; Heger, Alexander; Whalen, Daniel J. (2018). "The evolution of supermassive Population III stars". Monthly Notices of the Royal Astronomical Society. 474 (2): 2757–2773. arXiv:1705.09301. doi:10.1093/mnras/stx2919.
- ^ Herrington, Nicholas P.; Whalen, Daniel J.; Woods, Tyrone E. (2023). "Modelling supermassive primordial stars with <SCP>mesa</SCP>". Monthly Notices of the Royal Astronomical Society. 521: 463–473. arXiv:2208.00008. doi:10.1093/mnras/stad572.
- ^ Haemmerlé, L.; Klessen, R. S.; Mayer, L.; Zwick, L. (2021). "Maximum accretion rate of supermassive stars". Astronomy & Astrophysics. 652: L7. arXiv:2105.13373. Bibcode:2021A&A...652L...7H. doi:10.1051/0004-6361/202141376. S2CID 235247984.
- ^ Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (July 2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal. 645 (2): 1102–1117. arXiv:astro-ph/0603596. Bibcode:2006ApJ...645.1102L. doi:10.1086/504417. ISSN 0004-637X. S2CID 5150686.
- ^ Ren, Yi; Jiang, Bi-Wei (July 2020). "On the Granulation and Irregular Variation of Red Supergiants". The Astrophysical Journal. 898 (1): 24. arXiv:2006.06605. Bibcode:2020ApJ...898...24R. doi:10.3847/1538-4357/ab9c17. ISSN 0004-637X. S2CID 250739134.
- ^ "HORIZONS Web-Interface". ssd.jpl.nasa.gov. Retrieved 25 September 2021.
- ^ Healy, Sarah; Horiuchi, Shunsaku; Ashall, Chris (5 December 2024). "The Red Supergiant Problem: As Seen from the Local Group's Red Supergiant Populations". arXiv:2412.04386 [astro-ph.SR].
- ^ Humphreys, Roberta M.; Helmel, Greta; Jones, Terry J.; Gordon, Michael S. (August 2020). "Exploring the Mass Loss Histories of the Red Supergiants". The Astronomical Journal. 160 (3): 145. arXiv:2008.01108. Bibcode:2020AJ....160..145H. doi:10.3847/1538-3881/abab15. S2CID 220961677.
- ^ Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (April 2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy and Astrophysics. 540: L12. arXiv:1203.5194. Bibcode:2012A&A...540L..12W. doi:10.1051/0004-6361/201219126. ISSN 0004-6361. S2CID 54044968.
- ^ Alcolea, J.; Bujarrabal, V.; Planesas, P.; Teyssier, D.; Cernicharo, J.; De Beck, E.; Decin, L.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Melnick, G.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Schmidt, M.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M. (November 2013). "HIFISTARS Herschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star". Astronomy & Astrophysics. 559: 25. arXiv:1310.2400. Bibcode:2013A&A...559A..93A. doi:10.1051/0004-6361/201321683. ISSN 0004-6361. S2CID 263787323.
- ^ Gordon, Michael S.; Jones, Terry J.; Humphreys, Roberta M.; Ertel, Steve; Hinz, Philip M.; Hoffman, William F.; Stone, Jordan; Spalding, Eckhart; Vaz, Amali (February 2019). "Thermal Emission in the Southwest Clump of VY CMa". The Astronomical Journal. 157 (2): 57. arXiv:1811.05998. Bibcode:2019AJ....157...57G. doi:10.3847/1538-3881/aaf5cb. S2CID 119044678.
- ^ Nguyen, Thinh H.; Guinan, Edward F. (11 January 2022). "Stars on the Verge: Analyses of the Complex Light Variations of the Hyper-luminous Red Supergiant VY Canis Majoris: On the Nature of the Star's "Great Dimming" Episodes". Research Notes of the AAS. 6 (1): 12. Bibcode:2022RNAAS...6...12N. doi:10.3847/2515-5172/ac4991. ISSN 2515-5172.
- ^ Arroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Hauschildt, P. H. (June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy and Astrophysics. 554: A76. arXiv:1305.6179. Bibcode:2013A&A...554A..76A. doi:10.1051/0004-6361/201220920. ISSN 0004-6361. S2CID 73575062.
- ^ Montargès, M.; et al. (5 January 2023). "The VLT/SPHERE view of the ATOMIUM cool evolved star sample. I. Overview: Sample characterization through polarization analysis". Astronomy and Astrophysics. 671: A96. arXiv:2301.02081. Bibcode:2023A&A...671A..96M. doi:10.1051/0004-6361/202245398. S2CID 255440600.
- ^ Norris, Ryan Patrick (13 December 2019). Seeing stars like never before: A long-term interferometric imaging survey of red supergiants. Physics and Astronomy Dissertations (Thesis). Georgia State University. Bibcode:2019PhDT........63N. doi:10.57709/15009706.
- ^ Tabernero, H. M.; Dorda, R.; Negueruela, I.; Marfil, E. (February 2021). "The nature of VX Sagitarii: Is it a TŻO, a RSG, or a high-mass AGB star?". Astronomy & Astrophysics. 646: A98. arXiv:2011.09184. Bibcode:2021A&A...646A..98T. doi:10.1051/0004-6361/202039236. ISSN 0004-6361. S2CID 241206934.
- ^ Wing, Robert F. (September 2009). The Biggest Stars of All. The Biggest, Baddest, Coolest Stars ASP Conference Series. Vol. 412. p. 113. Bibcode:2009ASPC..412..113W. S2CID 117001990.
- ^ Richichi, A.; Percheron, I.; Khristoforova, M. (1 February 2005). "CHARM2: An updated Catalog of High Angular Resolution Measurements". Astronomy & Astrophysics. 431 (2): 773–777. Bibcode:2005A&A...431..773R. doi:10.1051/0004-6361:20042039. ISSN 0004-6361. Data about NML Cygni (IRC +40448) is found here at VizieR.
- ^ Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.; Brunthaler, A. (2012). "The distance and size of the red hypergiant NML Cygni from VLBA and VLA astrometry" (PDF). Astronomy & Astrophysics. 544: A42. arXiv:1207.1850. Bibcode:2012A&A...544A..42Z. doi:10.1051/0004-6361/201219587. S2CID 55509287.
- ^ Fok, Thomas K. T.; Nakashima, Jun-ichi; Yung, Bosco H. K.; Hsia, Chih-Hao; Deguchi, Shuji (November 2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters". The Astrophysical Journal. 760 (1): 65. arXiv:1209.6427. Bibcode:2012ApJ...760...65F. doi:10.1088/0004-637X/760/1/65. ISSN 0004-637X. S2CID 53393926.
- ^ Healy, Sarah; Horiuchi, Shunsaku; Molla, Marta Colomer; Milisavljevic, Dan; Tseng, Jeff; Bergin, Faith; Weil, Kathryn; Tanaka, Masaomi (23 March 2024). "Red Supergiant Candidates for Multimessenger Monitoring of the Next Galactic Supernova". Monthly Notices of the Royal Astronomical Society. 529 (4): 3630–3650. arXiv:2307.08785. Bibcode:2024MNRAS.529.3630H. doi:10.1093/mnras/stae738. ISSN 0035-8711.
- ^ Kusuno, K.; Asaki, Y.; Imai, H.; Oyama, T. (2013). "Distance and Proper Motion Measurement of the Red Supergiant, Pz Cas, in Very Long Baseline Interferometry H2O Maser Astrometry". The Astrophysical Journal. 774 (2): 107. arXiv:1308.3580. Bibcode:2013ApJ...774..107K. doi:10.1088/0004-637X/774/2/107. S2CID 118867155.
- ^ Ryan Norris. "Student Science at NMT: Learning Optical Interferometry Through Projects on Evolved Stars" (PDF). CHARA.
- ^ Josselin, E.; Plez, B. (July 2007). "Atmospheric dynamics and the mass loss process in red supergiant stars". Astronomy & Astrophysics. 469 (2): 671–680. arXiv:0705.0266. Bibcode:2007A&A...469..671J. doi:10.1051/0004-6361:20066353. ISSN 0004-6361. S2CID 17789027.
- ^ Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (August 2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not As Cool As We Thought". The Astrophysical Journal. 628 (2): 973–985. arXiv:astro-ph/0504337. Bibcode:2005ApJ...628..973L. doi:10.1086/430901. ISSN 0004-637X. S2CID 15109583.
- ^ "Mu Cephei | aavso". www.aavso.org. Retrieved 6 October 2024.
- ^ Arévalo, Aura de Las Estrellas Ramírez (July 2018). The Red Supergiants in the Supermassive Stellar Cluster Westerlund 1 (text thesis). University of São Paulo. doi:10.11606/D.14.2019.tde-12092018-161841.
- ^ Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; Mackey, J.; Kraus, A.; Meyer, D. M. -A.; Kamiński, T. (January 2014). "IRC −10414: a bow-shock-producing red supergiant star". Monthly Notices of the Royal Astronomical Society. 437 (1): 843–856. arXiv:1310.2245. Bibcode:2014MNRAS.437..843G. doi:10.1093/mnras/stt1943. ISSN 0035-8711.
- ^ Vallenari, A.; Brown, A. G. A.; Prusti, T. (13 June 2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics. 674. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. hdl:10902/30704. ISSN 0004-6361. S2CID 244398875.
- ^ Tsuboi, Masato; Kitamura, Yoshimi; Tsutsumi, Takahiro; Miyawaki, Ryosuke; Miyoshi, Makoto; Miyazaki, Atsushi (April 2020). "Sub-millimeter detection of a Galactic center cool star IRS 7 by ALMA". Publications of the Astronomical Society of Japan. 72 (2): 36. arXiv:2002.01620. Bibcode:2020PASJ...72...36T. doi:10.1093/pasj/psaa013. ISSN 0004-6264.
- ^ Guerço, Rafael; Smith, Verne V; Cunha, Katia; Ekström, Sylvia; Abia, Carlos; Plez, Bertrand; Meynet, Georges; Ramirez, Solange V; Prantzos, Nikos; Sellgren, Kris; Hayes, Cristian R; Majewski, Steven R (13 September 2022). "Evidence of deep mixing in IRS 7, a cool massive supergiant member of the Galactic nuclear star cluster". Monthly Notices of the Royal Astronomical Society. 516 (2): 2801–2811. arXiv:2208.10529. doi:10.1093/mnras/stac2393. ISSN 0035-8711.
- ^ Rodríguez-Coira, G.; Gravity Collaboration (2021). "The Molecular Layer of GCIRS7". New Horizons in Galactic Center Astronomy and Beyond. 528: 397. Bibcode:2021ASPC..528..397R.
- ^ Van Loon, J. Th.; Cioni, M.-R. L.; Zijlstra, A. A.; Loup, C. (18 April 2005). "An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars". Astronomy and Astrophysics. 438 (1): 273–289. arXiv:astro-ph/0504379. Bibcode:2005A&A...438..273V. doi:10.1051/0004-6361:20042555. S2CID 16724272.
- ^ "GCVS: "==WY Vel"". VizieR. General Catalogue of Variable Stars @ Centre de données astronomiques de Strasbourg. Retrieved 11 February 2024.
- ^ Norris, Ryan (27 February 2021). "An Interferometric Imaging Survey of Red Supergiant Stars". The 20.5Th Cambridge Workshop on Cool Stars: 263. Bibcode:2021csss.confE.263N. doi:10.5281/zenodo.4567641.
- ^ Anugu, Narsireddy; Gies, Douglas R.; Roettenbacher, Rachael M.; Monnier, John D.; Montargés, Miguel; Mérand, Antoine; Baron, Fabien; Schaefer, Gail H.; Shepard, Katherine A.; Kraus, Stefan; Anderson, Matthew D.; Codron, Isabelle; Gardner, Tyler; Gutierrez, Mayra; Köhler, Rainer (September 2024). "Time Evolution Images of the Hypergiant RW Cephei during the Rebrightening Phase Following the Great Dimming". The Astrophysical Journal Letters. 973 (1): L5. arXiv:2408.11906. Bibcode:2024ApJ...973L...5A. doi:10.3847/2041-8213/ad736c. ISSN 2041-8205.
- ^ Davies, B.; Figer, D. F.; Law, C. J.; Kudritzki, R. P.; Najarro, F.; Herrero, A.; MacKenty, J. W. (2008). "The Cool Supergiant Population of the Massive Young Star Cluster RSGC1". The Astrophysical Journal. 676 (2): 1016–1028. arXiv:0711.4757. Bibcode:2008ApJ...676.1016D. doi:10.1086/527350. S2CID 15639297.
- ^ Decin, Leen; Richards, Anita M. S.; Marchant, Pablo; Sana, Hugues (2024). "ALMA detection of CO rotational line emission in red supergiant stars of the massive young star cluster RSGC1". Astronomy & Astrophysics. 681: A17. arXiv:2303.09385. doi:10.1051/0004-6361/202244635.
- ^ Massalkhi, S.; Agúndez, M.; Cernicharo, J. (August 2019). "Study of CS, SiO, and SiS abundances in carbon star envelopes: assessing their role as gas-phase precursors of dust". Astronomy & Astrophysics. 628: A62. arXiv:1906.09461. Bibcode:2019A&A...628A..62M. doi:10.1051/0004-6361/201935069. ISSN 0004-6361. PMC 6739229. PMID 31511746.
- ^ van Genderen, A. M.; Lobel, A.; Nieuwenhuijzen, H.; Henry, G. W.; De Jager, C.; Blown, E.; Di Scala, G.; Van Ballegoij, E. J. (2019). "Pulsations, eruptions, and evolution of four yellow hypergiants". Astronomy and Astrophysics. 631: A48. arXiv:1910.02460. Bibcode:2019A&A...631A..48V. doi:10.1051/0004-6361/201834358. S2CID 203836020.
- ^ Comerón, F.; Djupvik, A. A.; Schneider, N.; Pasquali, A. (27 September 2020). "The historical record of massive star formation in Cygnus". Astronomy & Astrophysics. 2009: A62. arXiv:2009.12779. Bibcode:2020A&A...644A..62C. doi:10.1051/0004-6361/202039188. S2CID 221970180.
- ^ Turner, David G.; Rohanizadegan, Mina; Berdnikov, Leonid N.; Pastukhova, Elena N. (November 2006). "The Long-Term Behavior of the Semiregular M Supergiant Variable BC Cygni". Publications of the Astronomical Society of the Pacific. 118 (849): 1533–1544. Bibcode:2006PASP..118.1533T. doi:10.1086/508905. ISSN 0004-6280. S2CID 121309425.
- ^ Messineo, Maria; Figer, Donald F.; Kudritzki, Rolf-Peter; Zhu, Qingfeng; Menten, Karl M.; Ivanov, Valentin D.; Chen, C. -H. Rosie (2021). "New Infrared Spectral Indices of Luminous Cold Stars: From Early K to M Types". The Astronomical Journal. 162 (5): 187. arXiv:2107.03707. Bibcode:2021AJ....162..187M. doi:10.3847/1538-3881/ac116b. S2CID 235765247.
- ^ Bergeat, J.; Chevallier, L. (January 2005). "The mass loss of C-rich giants". Astronomy and Astrophysics. 429: 235–246. arXiv:astro-ph/0601366. Bibcode:2005A&A...429..235B. doi:10.1051/0004-6361:20041280. S2CID 56424665.
- ^ González-Torà, G.; Wittkowski, M.; Davies, B.; Plez, B. (19 December 2023). "The effect of winds on atmospheric layers of red supergiants II. Modelling VLTI/GRAVITY and MATISSE observations of AH Sco, KW Sgr, V602 Car, CK Car and V460 Car". Astronomy & Astrophysics. 683: A19. arXiv:2312.12521. doi:10.1051/0004-6361/202348047. ISSN 0004-6361.
- ^ Hopkins, Jeffrey L.; Bennett, Philip D.; Pollmann, Ernst (2015). "VV Cephei Eclipse Campaign 2017/19". The Society for Astronomical Sciences 34th Annual Symposium on Telescope Science. Published by Society for Astronomical Sciences. 34: 83. Bibcode:2015SASS...34...83H.
- ^ Wright, K. O. (1 April 1977). "The System of VV Cephei Derived from an Analysis of the Hα Line". Journal of the Royal Astronomical Society of Canada. 71: 152. Bibcode:1977JRASC..71..152W. ISSN 0035-872X.
- ^ Hack, M.; Engin, S.; Yilmaz, N.; Sedmak, G.; Rusconi, L.; Boehm, C. (1 November 1992). "Spectroscopic study of the atmospheric eclipsing binary VV Cephei". Astronomy and Astrophysics Supplement Series. 95: 589–601. Bibcode:1992A&AS...95..589H. ISSN 0365-0138.
- ^ De, Kishalay; Mereminskiy, Ilya; Soria, Roberto; Conroy, Charlie; Kara, Erin; Anand, Shreya; Ashley, Michael C. B.; Boyer, Martha L.; Chakrabarty, Deepto; Grefenstette, Brian; Hankins, Matthew J.; Hillenbrand, Lynne A.; Jencson, Jacob E.; Karambelkar, Viraj; Kasliwal, Mansi M. (1 August 2022). "SRGA J181414.6-225604: A New Galactic Symbiotic X-Ray Binary Outburst Triggered by an Intense Mass-loss Episode of a Heavily Obscured Mira Variable". The Astrophysical Journal. 935 (1): 36. arXiv:2205.09139. Bibcode:2022ApJ...935...36D. doi:10.3847/1538-4357/ac7c6e. ISSN 0004-637X. S2CID 248887540.
- ^ Siderud, Emelie (2020). Dust emission modelling of AGB stars.
- ^ Messineo, Maria (18 January 2023). "Identification of late-type Class I stars using Gaia DR3 Apsis parameters". Astronomy & Astrophysics. 671: A148. arXiv:2301.07415. Bibcode:2023A&A...671A.148M. doi:10.1051/0004-6361/202245587. S2CID 256486848.
- ^ Ramstedt, S.; Olofsson, H. (25 May 2014). "The CO/CO ratio in AGB stars of different chemical type. Connection to the C/C ratio and the evolution along the AGB". Astronomy and Astrophysics. 566: A145. arXiv:1405.6404. Bibcode:2014A&A...566A.145R. doi:10.1051/0004-6361/201423721. ISSN 0004-6361. S2CID 59125036.
- ^ Danilovich, T.; Teyssier, D.; Justtanont, K.; Olofsson, H.; Cerrigone, L.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Castro-Carrizo, A.; García-Lario, P.; Marston, A. (1 September 2015). "New observations and models of circumstellar CO line emission of AGB stars in the Herschel SUCCESS programme". Astronomy & Astrophysics. 581: A60. arXiv:1506.09065. Bibcode:2015A&A...581A..60D. doi:10.1051/0004-6361/201526705. ISSN 0004-6361.
- ^ Lombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N. L. J.; González-Alfonso, E.; Neufeld, D.; De Ridder, J.; Agúndez, M.; Blommaert, J. A. D. L.; Khouri, T. (April 2016). "Constraints on the H2O formation mechanism in the wind of carbon-rich AGB stars". Astronomy and Astrophysics. 588: A124. arXiv:1601.07017. Bibcode:2016A&A...588A.124L. doi:10.1051/0004-6361/201527049. ISSN 0004-6361. S2CID 62787287.
- ^ Natale, G.; Rea, N.; Lazzati, D.; Perna, R.; Torres, D. F.; Girart, J. M. (25 January 2017). "Dust Radiative Transfer Modeling of the Infrared Ring around the Magnetar SGR 1900+14". The Astrophysical Journal. 837 (1): 10. arXiv:1701.07442. Bibcode:2017ApJ...837....9N. doi:10.3847/1538-4357/aa5c82. S2CID 119213779.
- ^ Schöier, F. L.; Ramstedt, S.; Olofsson, H.; Lindqvist, M.; Bieging, J. H.; Marvel, K. B. (February 2013). "The abundance of HCN in circumstellar envelopes of AGB stars of different chemical types". Astronomy & Astrophysics. 550: A78. arXiv:1301.2129. Bibcode:2013A&A...550A..78S. doi:10.1051/0004-6361/201220400. ISSN 0004-6361.
- ^ Van Belle, G. T.; Thompson, R. R.; Creech-Eakman, M. J. (2002). "Angular Size Measurements of Mira Variable Stars at 2.2 Microns. II". The Astronomical Journal. 124 (3): 1706–1715. arXiv:astro-ph/0210167. Bibcode:2002AJ....124.1706V. doi:10.1086/342282. S2CID 33832649.
- ^ Decin, L.; Hony, S.; de Koter, A.; Molenberghs, G.; Dehaes, S.; Markwick-Kemper, F. (30 July 2007). "The variable mass loss of the AGB star WX Piscium as traced by the CO J = 1-0 through 7-6 lines and the dust emission". Astronomy & Astrophysics. 475 (1): 233–242. arXiv:0708.4107. doi:10.1051/0004-6361:20077737. ISSN 0004-6361.
- ^ Blum, R. D.; Ramírez, Solange V.; Sellgren, K.; Olsen, K. (3 July 2003). "Really Cool Stars and the Star Formation History at the Galactic Center". The Astrophysical Journal. 597 (1): 323–346. arXiv:astro-ph/0307291. Bibcode:2003ApJ...597..323B. doi:10.1086/378380. ISSN 0004-637X. S2CID 5664467.
- ^ Baron, F.; Monnier, J. D.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Anderson, M.; Aarnio, A.; Pedretti, E.; Thureau, N.; ten Brummelaar, T. A.; Ridgway, S. T. (April 2014). "CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging". The Astrophysical Journal. 785 (1): 46. arXiv:1405.4032. Bibcode:2014ApJ...785...46B. doi:10.1088/0004-637X/785/1/46. ISSN 0004-637X. S2CID 17085548.
- ^ Asaki, Yoshiharu; Maud, Luke T.; Francke, Harold; Nagai, Hiroshi; Petry, Dirk; Fomalont, Edward B.; Humphreys, Elizabeth; Richards, Anita M. S.; Wong, Ka Tat; Dent, William; Hirota, Akihiko; Fernandez, Jose Miguel; Takahashi, Satoko; Hales, Antonio S. (November 2023). "ALMA High-frequency Long Baseline Campaign in 2021: Highest Angular Resolution Submillimeter Wave Images for the Carbon-rich Star R Lep". The Astrophysical Journal. 958 (1): 86. arXiv:2310.09664. Bibcode:2023ApJ...958...86A. doi:10.3847/1538-4357/acf619. ISSN 0004-637X.
- ^ Wallstrom, S. H. J.; et al. (7 December 2023). "ATOMIUM: Molecular inventory of 17 oxygen-rich evolved stars observed with ALMA". Astronomy & Astrophysics. 681: A50. arXiv:2312.03467. doi:10.1051/0004-6361/202347632.
- ^ Ohnaka, K.; Hofmann, K. -H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (July 2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy and Astrophysics. 555: A24. arXiv:1304.4800. Bibcode:2013A&A...555A..24O. doi:10.1051/0004-6361/201321063. ISSN 0004-6361. S2CID 56396587.
- ^ Hoffleit, D.; Warren, W. H. Jr. (November 1995). "VizieR Online Data Catalog: Bright Star Catalogue, 5th Revised Ed. (Hoffleit+, 1991)". VizieR Online Data Catalog: V/50. Bibcode:1995yCat.5050....0H.
- ^ Mittag, M.; Schröder, K. -P.; Perdelwitz, V.; Jack, D.; Schmitt, J. H. M. M. (1 January 2023), "Chromospheric activity and photospheric variation of α Ori during the great dimming event in 2020", Astronomy and Astrophysics, 669: A9, arXiv:2211.04967, Bibcode:2023A&A...669A...9M, doi:10.1051/0004-6361/202244924, ISSN 0004-6361
- ^ Joyce, Meridith; Leung, Shing-Chi; Molnár, László; Ireland, Michael; Kobayashi, Chiaki; Nomoto, Ken'ichi (October 2020). "Standing on the Shoulders of Giants: New Mass and Distance Estimates for Betelgeuse through Combined Evolutionary, Asteroseismic, and Hydrodynamic Simulations with MESA". The Astrophysical Journal. 902 (1): 63. arXiv:2006.09837. Bibcode:2020ApJ...902...63J. doi:10.3847/1538-4357/abb8db. ISSN 0004-637X. S2CID 221507952.
- ^ MacLeod, Morgan; Blunt, Sarah; De Rosa, Robert J.; Dupree, Andrea K.; Granzer, Thomas; Harper, Graham M.; Huang, Caroline D.; Leiner, Emily M.; Loeb, Abraham (17 September 2024). "Radial Velocity and Astrometric Evidence for a Close Companion to Betelgeuse". arXiv:2409.11332 [astro-ph.SR].
- ^ Mittag, M.; Schröder, K. -P.; Perdelwitz, V.; Jack, D.; Schmitt, J. H. M. M. (January 2023). "Chromospheric activity and photospheric variation of α Ori during the great dimming event in 2020". Astronomy & Astrophysics. 669: 18. arXiv:2211.04967. Bibcode:2023A&A...669A...9M. doi:10.1051/0004-6361/202244924. ISSN 0004-6361. S2CID 253406622.
- ^ Montargès, M.; Norris, R.; Chiavassa, A.; Tessore, B.; Lèbre, A.; Baron, F. (June 2018). "The convective photosphere of the red supergiant CE Tau. I. VLTI/PIONIER H-band interferometric imaging". Astronomy & Astrophysics. 614: A12. arXiv:1802.06086. Bibcode:2018A&A...614A..12M. doi:10.1051/0004-6361/201731471. ISSN 0004-6361. S2CID 118950270.
- ^ Anugu, Narsireddy; et al. (7 August 2024). "CHARA Near-Infrared Imaging of the Yellow Hypergiant Star ρ Cassiopeiae: Convection Cells and Circumstellar Envelope". The Astrophysical Journal. 974 (1): 113. arXiv:2408.02756v2. Bibcode:2024ApJ...974..113A. doi:10.3847/1538-4357/ad6b2b.
- ^ Schmidt, M. R.; He, J. H.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Justtanont, K.; Teyssier, D.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Marston, A. P.; Sobolev, A. M. (August 2016). "Herschel /HIFI observations of the circumstellar ammonia lines in IRC+10216". Astronomy & Astrophysics. 592: A131. arXiv:1606.01878. Bibcode:2016A&A...592A.131S. doi:10.1051/0004-6361/201527290. ISSN 0004-6361. PMC 5217166. PMID 28065983.
- ^ Nieuwenhuijzen, H.; De Jager, C.; Kolka, I.; Israelian, G.; Lobel, A.; Zsoldos, E.; Maeder, A.; Meynet, G. (1 October 2012). "The hypergiant HR 8752 evolving through the yellow evolutionary void". Astronomy and Astrophysics. 546: A105. Bibcode:2012A&A...546A.105N. doi:10.1051/0004-6361/201117166. ISSN 0004-6361.
- ^ Groenewegen, M. A. T. (2020). "Analysing the spectral energy distributions of Galactic classical Cepheids". Astronomy and Astrophysics. 635: A33. arXiv:2002.02186. Bibcode:2020A&A...635A..33G. doi:10.1051/0004-6361/201937060. S2CID 211043995.
- ^ Kamiński, Tomek; Tylenda, Romuald; Kiljan, Aleksandra; Schmidt, Mirek; Lisiecki, Krzysztof; Melis, Carl; Frankowski, Adam; Joshi, Vishal; Menten, Karl M. (1 November 2021). "V838 Monocerotis as seen by ALMA: A remnant of a binary merger in a triple system". Astronomy & Astrophysics. 655: A32. arXiv:2106.07427. Bibcode:2021A&A...655A..32K. doi:10.1051/0004-6361/202141526. ISSN 0004-6361. S2CID 235422695.
- ^ Tylenda, R. (1 June 2005). "Evolution of V838 Monocerotis during and after the 2002 eruption". Astronomy & Astrophysics. 436 (3): 1009–1020. arXiv:astro-ph/0502060. Bibcode:2005A&A...436.1009T. doi:10.1051/0004-6361:20052800. ISSN 0004-6361. S2CID 3566688.
- ^ Najarro, Francisco; Figer, Don F.; Hillier, D. John; Geballe, T. R.; Kudritzki, Rolf P. (February 2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal. 691 (2): 1816–1827. arXiv:0809.3185. Bibcode:2009ApJ...691.1816N. doi:10.1088/0004-637X/691/2/1816. ISSN 0004-637X. S2CID 15473563.
- ^ Libert, Y.; Gerard, E.; Le Bertre, T. (10 September 2007). "The formation of a detached shell around the carbon star Y CVn". Monthly Notices of the Royal Astronomical Society. 380 (3): 1161–1171. arXiv:0706.4211. Bibcode:2007MNRAS.380.1161L. doi:10.1111/j.1365-2966.2007.12154.x.
- ^ Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H.; Ohnaka, K.; Richichi, A.; Schertl, D.; Schöller, M.; Scholz, M.; Weigelt, G.; Wittkowski, M.; Wood, P. R. (July 2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy & Astrophysics. 421 (2): 703–714. arXiv:astro-ph/0404248. Bibcode:2004A&A...421..703W. doi:10.1051/0004-6361:20035826. ISSN 0004-6361. S2CID 17009595.
- ^ Ohnaka, Keiichi; Weigelt, Gerd; Hofmann, Karl-Heinz (24 September 2019). "Infrared interferometric three-dimensional diagnosis of the atmospheric dynamics of the AGB star R Dor with VLTI/AMBER". The Astrophysical Journal. 883 (1): 89. arXiv:1908.06997. Bibcode:2019ApJ...883...89O. doi:10.3847/1538-4357/ab3d2a. ISSN 1538-4357. S2CID 201103617.
- ^ Moravveji, Ehsan; Guinan, Edward F.; Khosroshahi, Habib; Wasatonic, Rick (December 2013). "The Age and Mass of the α Herculis Triple-star System from a MESA Grid of Rotating Stars with 1.3". The Astronomical Journal. 146 (6): 148. arXiv:1308.1632. Bibcode:2013AJ....146..148M. doi:10.1088/0004-6256/146/6/148. ISSN 0004-6256. S2CID 117872505.
- ^ Clark, J. S.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Urbaneja, M. A.; Howarth, I. D. (May 2012). "On the nature of the galactic early-B hypergiants". Astronomy & Astrophysics. 541: A145. arXiv:1202.3991. Bibcode:2012A&A...541A.145C. doi:10.1051/0004-6361/201117472. ISSN 0004-6361. S2CID 11978733.
- ^ Harper, Graham M.; Bennett, Philip D.; Brown, Alexander; Ayres, Thomas R.; Ohnaka, Keiichi; Griffin, Elizabeth (2022). "HST STIS Observations of ζ Aurigae A's Irradiated Atmosphere". The Astronomical Journal. 164 (1): 16. Bibcode:2022AJ....164...16H. doi:10.3847/1538-3881/ac6feb. S2CID 250101470.
- ^ McDonald, I.; Zijlstra, A. A.; Watson, R. A. (1 October 2017), "Fundamental parameters and infrared excesses of Tycho-Gaia stars", Monthly Notices of the Royal Astronomical Society, 471 (1): 770–791, arXiv:1706.02208, Bibcode:2017MNRAS.471..770M, doi:10.1093/mnras/stx1433, ISSN 0035-8711 Note: See VizieR catalogue
- ^ Gull, Theodore R.; Hillier, D. John; Hartman, Henrik; Corcoran, Michael F.; Damineli, Augusto; Espinoza-Galeas, David; Hamaguchi, Kenji; Navarete, Felipe; Nielsen, Krister; Madura, Thomas; Moffat, Anthony F. J.; Morris, Patrick; Richardson, Noel D.; Russell, Christopher M. P.; Stevens, Ian R. (1 July 2022). "Eta Carinae: an evolving view of the central binary, its interacting winds and its foreground ejecta". The Astrophysical Journal. 933 (2): 175. arXiv:2205.15116. Bibcode:2022ApJ...933..175G. doi:10.3847/1538-4357/ac74c2. ISSN 0004-637X.
- ^ Davidson, Kris (5 February 2020). "Radiation-Driven Stellar Eruptions". Galaxies. 8 (1): 10. arXiv:2009.02340. Bibcode:2020Galax...8...10D. doi:10.3390/galaxies8010010. ISSN 2075-4434.
- ^ Chesneau, O.; Dessart, L.; Mourard, D.; Bério, Ph.; Buil, Ch.; Bonneau, D.; Borges Fernandes, M.; Clausse, J. M.; Delaa, O.; Marcotto, A.; Meilland, A.; Millour, F.; Nardetto, N.; Perraut, K.; Roussel, A. (October 2010). "Time, spatial, and spectral resolution of the Hαline-formation region of Deneb and Rigel with the VEGA/CHARA interferometer". Astronomy and Astrophysics. 521: A5. arXiv:1007.2095. doi:10.1051/0004-6361/201014509. ISSN 0004-6361.
- ^ Schiller, F.; Przybilla, N. (March 2008). "Quantitative spectroscopy of Deneb". Astronomy and Astrophysics. 479 (3): 849–858. arXiv:0712.0040. Bibcode:2008A&A...479..849S. doi:10.1051/0004-6361:20078590. ISSN 0004-6361. S2CID 103635615.
- ^ Baines, Ellyn K.; Armstrong, J. Thomas; Schmitt, Henrique R.; Zavala, R. T.; Benson, James A.; Hutter, Donald J.; Tycner, Christopher; van Belle, Gerard T. (20 December 2017). "Fundamental Parameters of 87 Stars from the Navy Precision Optical Interferometer". The Astronomical Journal. 155 (1): 30. arXiv:1712.08109. Bibcode:2018AJ....155...30B. doi:10.3847/1538-3881/aa9d8b. ISSN 1538-3881.
- ^ Souza, A. Domiciano de; Zorec, J.; Millour, F.; Bouquin, J.-B. Le; Spang, A.; Vakili, F. (1 October 2021). "Refined fundamental parameters of Canopus from combined near-IR interferometry and spectral energy distribution". Astronomy & Astrophysics. 654: A19. arXiv:2109.07153. Bibcode:2021A&A...654A..19D. doi:10.1051/0004-6361/202140478. ISSN 0004-6361. S2CID 237513623.
- ^ Nielsen, Krister E.; Airapetian, Vladimir S.; Carpenter, Kenneth G.; Rau, Gioia (1 August 2023). "The Advanced Spectral Library: The Evolution of Chromospheric Wind Characteristics from Noncoronal to Hybrid Giant Stars". The Astrophysical Journal. 953 (1): 16. Bibcode:2023ApJ...953...16N. doi:10.3847/1538-4357/acdcf1. ISSN 0004-637X.
- ^ Evans, Nancy Remage; Schaefer, Gail H.; Gallenne, Alexandre; Torres, Guillermo; Horch, Elliott P.; Anderson, Richard I.; Monnier, John D.; Roettenbacher, Rachael M.; Baron, Fabien; Anugu, Narsireddy; Davidson, James W.; Kervella, Pierre; Bras, Garance; Proffitt, Charles; Mérand, Antoine (1 August 2024). "The Orbit and Dynamical Mass of Polaris: Observations with the CHARA Array". The Astrophysical Journal. 971 (2): 190. arXiv:2407.09641. Bibcode:2024ApJ...971..190E. doi:10.3847/1538-4357/ad5e7a. ISSN 0004-637X.
- ^ Hatzes, A. P.; Cochran, W. D.; Endl, M.; Guenther, E. W.; MacQueen, P.; Hartmann, M.; Zechmeister, M.; Han, I.; Lee, B.-C.; Walker, G. a. H.; Yang, S.; Larson, A. M.; Kim, K.-M.; D. E. Mkrtichian; Döllinger, M. (1 August 2015). "Long-lived, long-period radial velocity variations in Aldebaran: A planetary companion and stellar activity". Astronomy & Astrophysics. 580: A31. arXiv:1505.03454. Bibcode:2015A&A...580A..31H. doi:10.1051/0004-6361/201425519. ISSN 0004-6361. S2CID 53324086.
- ^ Ramirez, I.; Prieto, C. Allende (20 December 2011). "Fundamental Parameters and Chemical Composition of Arcturus". The Astrophysical Journal. 743 (2): 135. arXiv:1109.4425. Bibcode:2011ApJ...743..135R. doi:10.1088/0004-637X/743/2/135. ISSN 0004-637X. S2CID 119186472.
- ^ Tkachenko, A.; et al. (May 2016), "Stellar modelling of Spica, a high-mass spectroscopic binary with a β Cep variable primary component", Monthly Notices of the Royal Astronomical Society, 458 (2): 1964–1976, arXiv:1601.08069, Bibcode:2016MNRAS.458.1964T, doi:10.1093/mnras/stw255, S2CID 26945389
- ^ McAlister, H. A.; ten Brummelaar, T. A.; Gies; Huang; Bagnuolo, Jr.; Shure; Sturmann; Sturmann; Turner; Taylor; Berger; Baines; Grundstrom; Ogden; Ridgway; Van Belle; et al. (2005). "First Results from the CHARA Array. I. An Interferometric and Spectroscopic Study of the Fast Rotator Alpha Leonis (Regulus)". The Astrophysical Journal. 628 (1): 439–452. arXiv:astro-ph/0501261. Bibcode:2005ApJ...628..439M. doi:10.1086/430730. S2CID 6776360.
- ^ Monnier, J. D.; Che, Xiao; Zhao, Ming; Ekström, S.; Maestro, V.; Aufdenberg, Jason; Baron, F.; Georgy, C.; Kraus, S.; McAlister, H.; Pedretti, E. (December 2012). "Resolving Vega and the Inclination Controversy with CHARA/MIRC". The Astrophysical Journal. 761 (1): L3. arXiv:1211.6055. Bibcode:2012ApJ...761L...3M. doi:10.1088/2041-8205/761/1/L3. ISSN 0004-637X. S2CID 17950155.
- ^ Bouchaud, K.; Domiciano de Souza, A.; Rieutord, M.; Reese, D. R.; Kervella, P. (1 January 2020). "A realistic two-dimensional model of Altair". Astronomy and Astrophysics. 633: A78. arXiv:1912.03138. Bibcode:2020A&A...633A..78B. doi:10.1051/0004-6361/201936830. ISSN 0004-6361.
- ^ Davis, J.; et al. (October 2010). "The Angular Diameter and Fundamental Parameters of Sirius A". Publications of the Astronomical Society of Australia. 28: 58–65. arXiv:1010.3790. doi:10.1071/AS10010.
- ^ Akeson, Rachel; Beichman, Charles; Kervella, Pierre; Fomalont, Edward; Benedict, G. Fritz (14 June 2021). "Precision Millimeter Astrometry of the α Centauri AB System". The Astronomical Journal. 162 (1): 14. arXiv:2104.10086. Bibcode:2021AJ....162...14A. doi:10.3847/1538-3881/abfaff. ISSN 0004-6256.
- ^ Kamath, D.; Wood, P. R.; Van Winckel, H. (1 December 2015). "Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud". Monthly Notices of the Royal Astronomical Society. 454 (2): 1468–1502. arXiv:1508.00670. doi:10.1093/mnras/stv1202. ISSN 0035-8711.
- ^ Beasor, Emma R.; Smith, Nathan (1 May 2022). "The Extreme Scarcity of Dust-enshrouded Red Supergiants: Consequences for Producing Stripped Stars via Winds". The Astrophysical Journal. 933 (1): 41. arXiv:2205.02207. Bibcode:2022ApJ...933...41B. doi:10.3847/1538-4357/ac6dcf. S2CID 248512934.
- ^ Massey, Philip; Neugent, Kathryn F.; Ekstrom, Sylvia; Georgy, Cyril; Georges, Meynet (2023). "The Time-Averaged Mass-Loss Rates of Red Supergiants As Revealed by their Luminosity Functions in M31 and M33". The Astrophysical Journal. 942 (2): 35. arXiv:2211.14147. Bibcode:2023ApJ...942...69M. doi:10.3847/1538-4357/aca665. S2CID 254018399.
- ^ Goldman, Steven R.; van Loon, Jacco Th.; Zijlstra, Albert A.; Green, James A.; Wood, Peter R.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Matsuura, Mikako; Groenewegen, Martin A. T.; Gómez, José F. (11 February 2017). "The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity". Monthly Notices of the Royal Astronomical Society. 465 (1): 403–433. arXiv:1610.05761. Bibcode:2017MNRAS.465..403G. doi:10.1093/mnras/stw2708. ISSN 0035-8711.
- ^ Groenewegen, M. A. T.; Sloan, G. C. (January 2018). "Luminosities and mass-loss rates of Local Group AGB stars and red supergiants". Astronomy & Astrophysics. 609: A114. arXiv:1711.07803. Bibcode:2018A&A...609A.114G. doi:10.1051/0004-6361/201731089. ISSN 0004-6361. S2CID 59327105.
- ^ University, Keele (December 2017). Research, Keele University (doctoral thesis). Keele University.
- ^ Neugent, Kathryn F.; Levesque, Emily M.; Massey, Philip; Morrell, Nidia I.; Drout, Maria R. (8 September 2020). "The Red Supergiant Binary Fraction of the Large Magellanic Cloud". The Astrophysical Journal. 900 (2): 118. arXiv:2007.15852. Bibcode:2020ApJ...900..118N. doi:10.3847/1538-4357/ababaa. ISSN 1538-4357.
- ^ Munoz-Sanchez, G.; de Wit, S.; Bonanos, A. Z.; Antoniadas, K.; Boutsia, K.; Boumis, P.; Christodoulou, E.; Kalitsounaki, M.; Udalski, A. (21 May 2024). "Episodic mass loss in the very luminous red supergiant [W60] B90 in the Large Magellanic Cloud". Astronomy & Astrophysics. 690: A99. arXiv:2405.11019. Bibcode:2024A&A...690A..99M. doi:10.1051/0004-6361/202450737.
- ^ Chen, Kaitlyn M.; Dorn-Wallenstein, Trevor Z. (March 2024). "A Spectroscopic Hunt for Post-red Supergiants in the Large Magellanic Cloud. I. Preliminary Results". Research Notes of the AAS. 8 (3): 75. arXiv:2403.08048. Bibcode:2024RNAAS...8...75C. doi:10.3847/2515-5172/ad32bb. ISSN 2515-5172. S2CID 268378990.
- ^ de Wit, S.; Bonanos, A.Z.; Tramper, F.; Yang, M.; Maravelias, G.; Boutsia, K.; Britavskiy, N.; Zapartas, E. (2023). "Properties of luminous red supergiant stars in the Magellanic Clouds". Astronomy and Astrophysics. 669: 17. arXiv:2209.11239. Bibcode:2023A&A...669A..86D. doi:10.1051/0004-6361/202243394. S2CID 252519285.
- ^ Martin, John C.; Humphreys, Roberta M. (30 October 2023). "A Census of the Most Luminous Stars. I. The Upper HR Diagram for the Large Magellanic Cloud". The Astronomical Journal. 166 (5): 214. Bibcode:2023AJ....166..214M. doi:10.3847/1538-3881/ad011e. ISSN 0004-6256.
- ^ García-Hernández, D. A.; Manchando, A.; Lambert, D. L.; Plez, B.; García-Lario, P.; D'Antona, F.; Lugaro, M.; Karakas, A. I.; van Raai, M. A. (8 October 2009). "Rb-Rich Asymptotic Giant Branch Stars in the Magellanic Clouds". The Astrophysical Journal Letters. 705 (1): L31–L35. arXiv:0909.4391. Bibcode:2009ApJ...705L..31G. doi:10.1088/0004-637X/705/1/L31. hdl:1885/29244. ISSN 0004-637X. S2CID 17864885.
- ^ Britavskyi, N.; Lennon, D. J.; Patrick, L. R.; Evans, C. J.; Herrero, A.; Langer, N.; van Loon, J. Th.; Clark, J. S.; Schneider, F. R. N.; Almeida, L. A.; Sana, H.; de Koter, A.; Taylor, W. D. (26 February 2019). "The VLT-FLAMES Tarantula Survey. XXX. Red stragglers in the clusters Hodge 301 and SL 639". Astronomy & Astrophysics. 624: 13. arXiv:1902.09891. Bibcode:2019A&A...624A.128B. doi:10.1051/0004-6361/201834564. S2CID 244683559.
- ^ Munoz-Sanchez, G.; et al. (28 November 2024). "The dramatic transition of the extreme Red Supergiant WOH G64 to a Yellow Hypergiant". arXiv:2411.19329 [astro-ph.SR].
- ^ Ohnaka, K.; Driebe, T.; Hofmann, K. -H.; Weigelt, T.; Wittkowski, M. (16 April 2008). "Spatially resolved dusty torus toward the red supergiant WOH G64 in the Large Magellanic Cloud". Astronomy and Astrophysics. 484 (2): 371–379. arXiv:0803.3823. Bibcode:2008A&A...484..371O. doi:10.1051/0004-6361:200809469. ISSN 0004-6361. S2CID 10451475.
- ^ Ohnaka, Keiichi; Driebe, Thomas; Hofmann, Karl-Heinz; Weigelt, Gerd; Wittkowski, Markus (March 2009). "Resolving the dusty torus and the mystery surrounding LMC red supergiant WOH G64". Proceedings of the International Astronomical Union. 256: 454–458. Bibcode:2009IAUS..256..454O. doi:10.1017/S1743921308028858. ISSN 1743-9213. S2CID 120287846.
- ^ Levesque, Emily M.; Massey, Philip; Plez, Bertrand; Olsen, Knut A. G. (2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?". The Astronomical Journal. 137 (6): 4744. arXiv:0903.2260. Bibcode:2009AJ....137.4744L. doi:10.1088/0004-6256/137/6/4744. S2CID 18074349.
- ^ Levesque, E. M. (June 2010). The Physical Properties of Red Supergiants. Hot and Cool: Bridging Gaps in Massive Star Evolution ASP Conference Series. Vol. 425. p. 103. arXiv:0911.4720. Bibcode:2010ASPC..425..103L. S2CID 8921166.
- ^ Steven R. Goldman; Jacco Th. van Loon (2016). "The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity". Monthly Notices of the Royal Astronomical Society. 465 (1): 403–433. arXiv:1610.05761. Bibcode:2017MNRAS.465..403G. doi:10.1093/mnras/stw2708. S2CID 11352637.
- ^ Dorn-Wallenstein, Trevor Z.; Levesque, Emily M.; Davenport, James R. A.; Neugent, Kathryn F.; Morris, Brett M.; Bostroem, K. Azalee (1 November 2022). "The Properties of Fast Yellow Pulsating Supergiants: FYPS Point the Way to Missing Red Supergiants". The Astrophysical Journal. 940 (1): 27. arXiv:2206.11917. Bibcode:2022ApJ...940...27D. doi:10.3847/1538-4357/ac79b2. ISSN 0004-637X.
- ^ Beasor, Emma R; Davies, Ben; Cabrera-Ziri, Ivan; Hurst, Georgia (21 September 2018). "A critical re-evaluation of the Thorne–Żytkow object candidate HV 2112". Monthly Notices of the Royal Astronomical Society. 479 (3): 3101–3105. arXiv:1806.07399. Bibcode:2018MNRAS.479.3101B. doi:10.1093/mnras/sty1744. ISSN 0035-8711.
- ^ Glatzel, Wolfgang; Kraus, Michaela (23 March 2024). "Instabilities in the yellow hypergiant domain". Monthly Notices of the Royal Astronomical Society. 529 (4): 4947–4957. arXiv:2403.14315. doi:10.1093/mnras/stae861. ISSN 0035-8711.
- ^ Lamers, H. J. G. L. M. (1 January 1995). "Observations and Interpretation of Luminous Blue Variables". IAU Colloq. 155: Astrophysical Applications of Stellar Pulsation. 83: 176. Bibcode:1995ASPC...83..176L.
- ^ Kastner, Joel H.; Buchanan, Catherine L.; Sargent, B.; Forrest, W. J. (10 February 2006). "Spitzer Spectroscopy of Dusty Disks around B[e] Hypergiants in the Large Magellanic Cloud". The Astrophysical Journal. 638 (1): L29–L32. Bibcode:2006ApJ...638L..29K. doi:10.1086/500804. ISSN 0004-637X. S2CID 121769413.
- ^ Brands, Sarah A.; Koter, Alex de; Bestenlehner, Joachim M.; Crowther, Paul A.; Sundqvist, Jon O.; Puls, Joachim; Caballero-Nieves, Saida M.; Abdul-Masih, Michael; Driessen, Florian A.; García, Miriam; Geen, Sam; Gräfener, Götz; Hawcroft, Calum; Kaper, Lex; Keszthelyi, Zsolt (1 July 2022). "The R136 star cluster dissected with Hubble Space Telescope/STIS – III. The most massive stars and their clumped winds". Astronomy & Astrophysics. 663: A36. arXiv:2202.11080. Bibcode:2022A&A...663A..36B. doi:10.1051/0004-6361/202142742. ISSN 0004-6361. S2CID 247025548.
- ^ Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W.-R. (May 2014). "The Wolf-Rayet stars in the Large Magellanic Cloud: A comprehensive analysis of the WN class⋆⋆⋆". Astronomy & Astrophysics. 565: A27. arXiv:1401.5474. Bibcode:2014A&A...565A..27H. doi:10.1051/0004-6361/201322696. ISSN 0004-6361. S2CID 55123954.
- ^ Shenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A. F. J.; Eldridge, J. J.; Pablo, H.; Oskinova, L. M.; Richardson, N. D. (July 2017). "Wolf-Rayet stars in the Small Magellanic Cloud: II. Analysis of the binaries". Astronomy & Astrophysics. 591: A22. arXiv:1604.01022. Bibcode:2016A&A...591A..22S. doi:10.1051/0004-6361/201527916. ISSN 0004-6361. S2CID 119255408.
- ^ Drout, Maria R.; Massey, Philip; Meynet, Georges (April 2012). "THE YELLOW AND RED SUPERGIANTS OF M33*". The Astrophysical Journal. 750 (2): 97. arXiv:1203.0247. Bibcode:2012ApJ...750...97D. doi:10.1088/0004-637X/750/2/97. ISSN 0004-637X. S2CID 119160120.
- ^ Massey, Philip; Evans, Kate Anne (August 2016). "The Red Supergiant Content of M31*". The Astrophysical Journal. 826 (2): 224. arXiv:1605.07900. Bibcode:2016ApJ...826..224M. doi:10.3847/0004-637X/826/2/224. ISSN 0004-637X.
- ^ Massey, Philip; Silva, David R.; Levesque, Emily M.; Plez, Bertrand; Olsen, Knut A. G.; Clayton, Geoffrey C.; Meynet, Georges; Maeder, Andre (September 2009). "Red Supergiants in the Andromeda Galaxy (M31)". The Astrophysical Journal. 703 (1): 420–440. arXiv:0907.3767. Bibcode:2009ApJ...703..420M. doi:10.1088/0004-637X/703/1/420. S2CID 119293010. Retrieved 30 September 2023.
- ^ Kourniotis, M.; Bonanos, A. Z.; Yuan, W.; Macri, L. M.; Garcia-Alvarez, D.; Lee, C.-H. (1 May 2017). "Monitoring luminous yellow massive stars in M 33: new yellow hypergiant candidates". Astronomy & Astrophysics. 601: A76. arXiv:1612.06853. Bibcode:2017A&A...601A..76K. doi:10.1051/0004-6361/201629146. ISSN 0004-6361. S2CID 55559261.
- ^ Valeev, A. F.; Sholukhova, O.; Fabrika, S. (11 June 2009). "A new luminous variable in M33". Monthly Notices of the Royal Astronomical Society: Letters. 396 (1): L21–L25. arXiv:0903.5222. Bibcode:2009MNRAS.396L..21V. doi:10.1111/j.1745-3933.2009.00654.x. S2CID 14666975.
- ^ Britavskiy, N. E.; Bonanos, A. Z.; Herrero, A.; Cerviño, M.; García-Álvarez, D.; Boyer, M. L.; Masseron, T.; Mehner, A.; McQuinn, K. B. W. (November 2019). "Physical parameters of red supergiants in dwarf irregular galaxies in the Local Group". Astronomy and Astrophysics. 631: A95. arXiv:1909.13378. Bibcode:2019A&A...631A..95B. doi:10.1051/0004-6361/201935212. ISSN 0004-6361. S2CID 203593402.
- ^ Neugent, Kathryn (2022). "Locating Red Supergiants in the Galaxy NGC 6822". The Astronomical Journal. 163 (2): 70. arXiv:2112.03990. Bibcode:2022AJ....163...70D. doi:10.3847/1538-3881/ac410e.
- ^ González-Torà, Gemma; Davies, Ben; Kudritzki, Rolf-Peter; Plez, Bertrand (23 June 2021). "The temperatures of red supergiants in low-metallicity environments". Monthly Notices of the Royal Astronomical Society. 505 (3): 4422–4443. arXiv:2106.01807. doi:10.1093/mnras/stab1611. ISSN 0035-8711.
- ^ Jones, Olivia C.; Maclay, Matthew T.; Boyer, Martha L.; Meixner, Margaret; McDonald, Iain; Meskhidze, Helen (1 February 2018). "Near-infrared Stellar Populations in the Metal-poor, Dwarf Irregular Galaxies Sextans A and Leo A". The Astrophysical Journal. 854 (2): 117. arXiv:1712.06594. Bibcode:2018ApJ...854..117J. doi:10.3847/1538-4357/aaa542. ISSN 0004-637X. S2CID 119199303.
- ^ Abbott, Jay Brian (2004). "Quantitative spectroscopic studies of Wolf-Rayet stars in local group galaxies". Bibcode:2004PhDT.......161A.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ de Wit, S.; Bonanos, A. Z.; Antoniadis, K.; Zapartas, E.; Ruiz, A.; Britavskiy, N.; Christodoulou, E.; De, K.; Maravelias, G. (19 February 2024), "Investigating episodic mass loss in evolved massive stars", Astronomy & Astrophysics, 689: A46, arXiv:2402.12442, doi:10.1051/0004-6361/202449607
- ^ "[TSK2008] 236". SIMBAD. Centre de données astronomiques de Strasbourg.
- ^ Humphreys, Roberta M.; Stangl, Sarah; Gordon, Michael S.; Davidson, Kris; Grammer, Skyler H. (January 2019). "Luminous and Variable Stars in NGC 2403 and M81". The Astronomical Journal. 157 (1): 22. arXiv:1811.06559. Bibcode:2019AJ....157...22H. doi:10.3847/1538-3881/aaf1ac. ISSN 0004-6256. S2CID 119379139.
- ^ Bond, Howard E.; Jencson, Jacob E.; Whitelock, Patricia A.; Adams, Scott M.; Bally, John; Cody, Ann Marie; Gehrz, Robert D.; Kasliwal, Mansi M.; Masci, Frank J. (April 2022). "Hubble Space Telescope Imaging of Luminous Extragalactic Infrared Transients and Variables from the Spitzer Infrared Intensive Transients Survey*". The Astrophysical Journal. 928 (2): 158. arXiv:2202.11040. Bibcode:2022ApJ...928..158B. doi:10.3847/1538-4357/ac5832. ISSN 0004-637X.
- ^ Zachary, Gazak J.; Kudritzki, Rolf; Evans, Chris; Patrick, Lee; Davies, Ben; Bergemann, Maria; Plez, Bertand; Bresolin, Fabio; Bender, Ralf; Wegner, Michael; Bonanos, Alceste Z.; Williams, Stephen J. (2 June 2015). "Red Supergiants as Cosmic Abundance Probes: The Sculptor Galaxy NGC 300". The Astrophysical Journal. 805 (2): 9. arXiv:1505.00871. Bibcode:2015ApJ...805..182G. doi:10.1088/0004-637X/805/2/182. ISSN 0004-637X. S2CID 14681047.
- ^ Petit, V.; Drissen, L.; Crowther, P. A. (2005). "Quantitative analysis of STIS spectra of NGC 2363-V1". The Fate of the Most Massive Stars. 332: 159. Bibcode:2005ASPC..332..157P.
- ^ "[HMR2016] N4038 13068". SIMBAD. Centre de données astronomiques de Strasbourg.
- ^ "[HMR2016] N4038 46842". SIMBAD. Centre de données astronomiques de Strasbourg.
- ^ Ilie, Cosmin; Paulin, Jillian; Freese, Katherine (25 July 2023). "Supermassive Dark Star candidates seen by JWST". Proceedings of the National Academy of Sciences. 120 (30): e2305762120. arXiv:2304.01173. Bibcode:2023PNAS..12005762I. doi:10.1073/pnas.2305762120. ISSN 0027-8424. PMC 10372643. PMID 37433001.
- ^ Ball, Warrick H.; Tout, Christopher A.; Żytkow, Anna N.; Eldridge, John J. (1 July 2011). "The structure and evolution of quasi-stars: The structure and evolution of quasi-stars". Monthly Notices of the Royal Astronomical Society. 414 (3): 2751–2762. arXiv:1102.5098. doi:10.1111/j.1365-2966.2011.18591.x. S2CID 119239346.
- ^ Diego, J. M.; et al. (2023). "JWST's PEARLS: A new lens model for ACT-CL J0102−4915, "El Gordo," and the first red supergiant star at cosmological distances discovered by JWST". Astronomy & Astrophysics. 672: A3. arXiv:2210.06514. Bibcode:2023A&A...672A...3D. doi:10.1051/0004-6361/202245238. S2CID 252873244.
- ^ Diego, J. M.; Pascale, M.; Kavanagh, B. J.; Kelly, P.; Dai, L.; Frye, B.; Broadhurst, T. (September 2022). "Godzilla, a monster lurks in the Sunburst galaxy". Astronomy & Astrophysics. 665: A134. arXiv:2203.08158. Bibcode:2022A&A...665A.134D. doi:10.1051/0004-6361/202243605. ISSN 0004-6361. S2CID 247476158.
- ^ "Scientists face down 'Godzilla', the most luminous star known". Nature. 610 (7930): 10. 6 October 2022. Bibcode:2022Natur.610T..10.. doi:10.1038/d41586-022-03054-3. ISSN 0028-0836.
- ^ Diego, J. M.; Sun, Bangzheng; Yan, Haojing; Furtak, Lukas J.; Zackrisson, Erik; Dai, Liang; Kelly, Patrick; Nonino, Mario; Adams, Nathan; Meena, Ashish K.; Willner, S. P.; Zitrin, Adi; Cohen, Seth H.; D'Silva, Jordan C. J.; Jansen, Rolf A. (19 September 2023). "JWST's PEARLS: Mothra, a new kaiju star at z=2.091 extremely magnified by MACS0416, and implications for dark matter models". Astronomy & Astrophysics. 679: A31. arXiv:2307.10363. Bibcode:2023A&A...679A..31D. doi:10.1051/0004-6361/202347556. ISSN 0004-6361. S2CID 259991552.
- ^ Pastorello, A.; Chen, T.-W.; Cai, Y.-Z.; Morales-Garoffolo, A.; Cano, Z.; Mason, E.; Barsukova, E. A.; Benetti, S.; Berton, M.; Bose, S.; Bufano, F.; Callis, E.; Cannizzaro, G.; Cartier, R.; Chen, Ping (May 2019). "The evolution of luminous red nova AT 2017jfs in NGC 4470". Astronomy & Astrophysics. 625: L8. arXiv:1906.00811. Bibcode:2019A&A...625L...8P. doi:10.1051/0004-6361/201935511. ISSN 0004-6361. S2CID 155703569.
- ^ Elias-Rosa, N.; Benetti, S.; Cappellaro, E.; Pastorello, A.; Terreran, G.; Morales-Garoffolo, A; Howerton, S. C.; Valenti, S.; Kankare, E.; Drake, A. J.; Djorgovski, S. G.; Tomasella, L.; Tartaglia, L.; Kangas, T.; Ochner, P.; Filippenko, A. V.; Ciabattari, F.; Geier, S.; Howell, D. A.; Isern, J.; Leonini, S.; Pignata, J.; Turatto, M. (9 January 2018). "SNhunt151: an explosive event inside a dense cocoon". Monthly Notices of the Royal Astronomical Society. 475 (2): 2614–2631. arXiv:1801.03040. Bibcode:2018MNRAS.475.2614E. doi:10.1093/mnras/sty009. ISSN 0035-8711. S2CID 119519504.
- ^ Elias-Rosa, N.; et al. (7 September 2016). "Dead or Alive? Long-term evolution of SN 2015bh (SNhunt275)". Monthly Notices of the Royal Astronomical Society. 463 (4): 3894–3920. arXiv:1606.09024. Bibcode:2016MNRAS.463.3894E. doi:10.1093/mnras/stw2253. ISSN 0035-8711. S2CID 119205955.
- ^ Cai, Y. -Z.; et al. (3 December 2019). "The transitional gap transient AT 2018hso: new insights into the luminous red nova phenomenon". Astronomy & Astrophysics. 631: 9. arXiv:1909.13147. Bibcode:2019A&A...632L...6C. doi:10.1051/0004-6361/201936749. ISSN 0004-6361. S2CID 203593575.
- ^ Charalampopoulos, P.; et al. (22 January 2024). "The fast transient AT 2023clx in the nearby LINER galaxy NGC 3799 as a tidal disruption of a very low-mass star". Astronomy & Astrophysics. 689: A350. arXiv:2401.11773v2. Bibcode:2024A&A...689A.350C. doi:10.1051/0004-6361/202449296.
- ^ Jencson, Jacob E.; Adams, Scott M.; Bond, Howard E.; van Dyk, Schuyler D.; Kasliwal, Mansi M.; Bally, John; Blagorodnova, Nadejda; De, Kishalay; Fremling, Christoffer; Yao, Yuhan; Fruchter, Andrew; Rubin, David; Barbarino, Cristina; Sollerman, Jesper; Miller, Adam A. (26 July 2019). "Discovery of an Intermediate-luminosity Red Transient in M51 and Its Likely Dust-obscured, Infrared-variable Progenitor". The Astrophysical Journal. 880 (2): L20. arXiv:1904.07857. Bibcode:2019ApJ...880L..20J. doi:10.3847/2041-8213/ab2c05. ISSN 2041-8213.
- ^ Smith, Nathan; Frew, David J. (2011). "A revised historical light curve of Eta Carinae and the timing of close periastron encounters". Monthly Notices of the Royal Astronomical Society. 415 (3): 2009–2019. arXiv:1010.3719. Bibcode:2011MNRAS.415.2009S. doi:10.1111/j.1365-2966.2011.18993.x. S2CID 118614725.
- ^ Cai Y. -Z.; et al. (27 October 2021). "Intermediate-luminosity red transients: Spectrophotometric properties and connection to electron-capture supernova explosions". Astronomy & Astrophysics. 654: 30. arXiv:2108.05087. Bibcode:2021A&A...654A.157C. doi:10.1051/0004-6361/202141078. ISSN 0004-6361. S2CID 236976052.
- ^ Pessi, Thallis; Prieto, Jose L.; Monard, Berto; Kochanek, Christopher S.; Bock, Greg; Drake, Andrew J.; Fox, Ori D.; Parker, Stuart; Stevance, Heloise F. (4 April 2022). "Unveiling the Nature of SN 2011fh: A Young and Massive Star Gives Rise to a Luminous SN 2009ip-like Event". The Astrophysical Journal. 928 (2): 21. arXiv:2110.09546. Bibcode:2022ApJ...928..138P. doi:10.3847/1538-4357/ac562d. ISSN 1538-4357. S2CID 239024685.
- ^ Soker, Noam; Kaplan, Noa (May 2021). "Explaining recently studied intermediate luminosity optical transients (ILOTs) with jet powering". Research in Astronomy and Astrophysics. 21 (4): 9. arXiv:2007.06472. Bibcode:2021RAA....21...90S. doi:10.1088/1674-4527/21/4/90. ISSN 1674-4527. S2CID 220496730.
- ^ Stritzinger, M. D; et al. (22 July 2020). "The Carnegie Supernova Project II. Observations of the intermediate-luminosity red transient SNhunt120". Astronomy & Astrophysics. 639: 17. arXiv:2005.00319. Bibcode:2020A&A...639A.103S. doi:10.1051/0004-6361/202038018. ISSN 0004-6361. S2CID 249866047.
- ^ Cai, Y. -Z; Pastorello, A.; Fraser, M.; Botticella, M. T.; Gall, C.; Arcavi, I.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Harmanen, J.; Hosseinzadeh, G.; Howell, D. A.; Isern, J.; Kangas, T.; Kankare, E.; Kuncarayakti, H.; Lundqvist, P.; Mattila, S.; McCully, C.; Reynolds, T. M.; Somero, A.; Stritzinger, M. D.; Terreran, G. (1 August 2018). "AT 2017be – a new member of the class of intermediate-luminosity red transients". Monthly Notices of the Royal Astronomical Society. 480 (3): 3424–3445. arXiv:1807.11676. Bibcode:2018MNRAS.480.3424C. doi:10.1093/mnras/sty2070. ISSN 0035-8711. S2CID 118946285.
- ^ Allan, Andrew P; Groh, Jose H; Mehner, Andrea; Smith, Nathan; Boian, Ioana; Farrell, Eoin J; Andrews, Jennifer E (1 August 2020). "The possible disappearance of a massive star in the low-metallicity galaxy PHL 293B". Monthly Notices of the Royal Astronomical Society. 496 (2): 1902–1908. arXiv:2003.02242. doi:10.1093/mnras/staa1629. ISSN 0035-8711.
- ^ Kankare, E.; Kotak, R.; Pastorello, A.; Fraser, M; Mattila, S.; Smartt, S. J.; Bruce, A.; Chambers, K. C.; Elias-Rosa, N.; Flewelling, H.; Fremling, C.; Harmanen, J.; Huber, M.; Jerkstand, A.; Kangas, T.; Kuncarayakti, H.; Magee, M.; Magnier, E.; Polshaw, J.; Smith, K. W.; Sollerman, J.; Tomasella, L. (7 September 2015). "On the triple peaks of SNHunt248 in NGC 5806". Astronomy & Astrophysics. 581: 7. arXiv:1508.04730. Bibcode:2015A&A...581L...4K. doi:10.1051/0004-6361/201526631. ISSN 0004-6361. S2CID 85321.
- ^ Mehner, A.; Baade, D.; Rivinius, T.; Lennon, D. J.; Martayan, C.; Stahl, O.; Štefl, S. (July 2013). "Broad-band spectroscopy of the ongoing large eruption of the luminous blue variable R71". Astronomy & Astrophysics. 555: A116. arXiv:1303.1367. Bibcode:2013A&A...555A.116M. doi:10.1051/0004-6361/201321323. ISSN 0004-6361. S2CID 67775752.
- ^ Aghakhanloo, Mojgan; Smith, Nathan; Milne, Peter; Andrews, Jennifer E.; Filippenko, Alexei V.; Jencson, Jacob E.; Sand, David J.; Van Dyk, Schuyler D.; Wyatt, Samuel; Zheng, WeiKang (28 February 2023). "Repeating periodic eruptions of the supernova impostor SN 2000ch". Monthly Notices of the Royal Astronomical Society. 521 (2): 1941–1957. arXiv:2212.00113. Bibcode:2023MNRAS.521.1941A. doi:10.1093/mnras/stad630. ISSN 0035-8711. S2CID 254125316.
- ^ Aghakhanloo, Mojgan; Smith, Nathan; Milne, Peter; Andrews, Jennifer E.; Van Dyck, Schuyler D.; Filippenko, Alexei V.; Jencson, Jacob E.; Lau, Ryan N.; Sand, David J.; Wyatt, Samuel; Zhang, WeiKang (7 September 2023). "Recurring outbursts of the supernova impostor AT 2016blu in NGC 4559". Monthly Notices of the Royal Astronomical Society. 526 (1): 456–472. arXiv:2212.09708. Bibcode:2023MNRAS.526..456A. doi:10.1093/mnras/stad2702. ISSN 0035-8711. S2CID 254854145.
- ^ Salmaso, I.; Cappellaro, E.; Tartaglia, L.; Benetti, S.; Botticella, M. T.; Elias-Rosa, M.; Pastorello, A.; Patat, F.; Reguitti, A.; Tomasella, L.; Valerin, G.; Yang, S. (May 2023). "Hidden shock powering the peak of SN 2020faa". Astronomy & Astrophysics. 673: 14. arXiv:2302.12527. Bibcode:2023A&A...673A.127S. doi:10.1051/0004-6361/202245781. ISSN 0004-6361. S2CID 257205910.
- ^ "Papers with Code - The Dusty and Extremely Red Progenitor of the Type II Supernova 2023ixf in Messier 101". astro.paperswithcode.com. Retrieved 25 November 2023.
- ^ Qin, Y.; Zhang, Keming; Bloom, J.; Sollerman, J.; Zimmerman, E.; Irani, I.; Schulze, S.; Gal-yam, A.; Kasliwal, M.; Coughlin, M.; Perley, D.; Fremling, C.; Kulkarni, S. (2024). "The Progenitor Star of SN 2023ixf: A Massive Red Supergiant with Enhanced, Episodic Pre-Supernova Mass Loss". Monthly Notices of the Royal Astronomical Society. 534: 271–280. arXiv:2309.10022. doi:10.1093/mnras/stae2012. S2CID 262054068.
- ^ Kilpatrick, Charles D.; et al. (29 June 2023). "EType II-P supernova progenitor star initial masses and SN 2020jfo: direct detection, light-curve properties, nebular spectroscopy, and local environment". Monthly Notices of the Royal Astronomical Society. 524 (2): 2161–2185. arXiv:2307.00550. Bibcode:2023MNRAS.524.2161K. doi:10.1093/mnras/stad1954. ISSN 0035-8711. S2CID 259306203.
- ^ Shrestha, Manisha; et al. (2024). "Evidence of weak circumstellar medium interaction in the Type II SN 2023axu". The Astrophysical Journal. 961 (2): 247. arXiv:2310.00162. Bibcode:2024ApJ...961..247S. doi:10.3847/1538-4357/ad11e1.
- ^ Yan, Shengyu; Wang, Xiaofeng; Gao, Xing; Zhang, Jujia; Brink, Thomas G.; Mo, Jun; Lin, Weili; Xiang, Danfeng; Ma, Xiaoran; Guo, Fangzhou; Tomasella, Lina; Benetti, Stefano; Cai, Yongzhi; Cappellaro, Enrico; Chen, Zhihao; Li, Zhitong; Pastorello, Andrea; Zhang, Tiangmeng (7 October 2023). "Discovery of the Closest Ultrastripped Supernova: SN 2021agco in UGC 3855". The Astrophysical Journal. 959 (2): L32. arXiv:2310.04827. Bibcode:2023ApJ...959L..32Y. doi:10.3847/2041-8213/ad0cc3.
- ^ SIMBAD.
- ^ Ohnaka, K.; Hofmann, K. -H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (1 July 2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy and Astrophysics. 555: A24. arXiv:1304.4800. Bibcode:2013A&A...555A..24O. doi:10.1051/0004-6361/201321063. ISSN 0004-6361.
- ^ van Leeuwen, F. (1 November 2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. ISSN 0004-6361.
- ^ Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K. -H.; Ohnaka, K.; Richichi, A.; Schertl, D.; Schöller, M.; Scholz, M.; Weigelt, G.; Wittkowski, M.; Wood, P. R. (1 July 2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy and Astrophysics. 421 (2): 703–714. arXiv:astro-ph/0404248. Bibcode:2004A&A...421..703W. doi:10.1051/0004-6361:20035826. ISSN 0004-6361.
- ^ Ramírez, I.; Allende Prieto, C. (1 December 2011). "Fundamental Parameters and Chemical Composition of Arcturus". The Astrophysical Journal. 743 (2): 135. arXiv:1109.4425. Bibcode:2011ApJ...743..135R. doi:10.1088/0004-637X/743/2/135. ISSN 0004-637X.
- ^ Wallstrom, S. H. J.; Danilovich, T.; Muller, H. S. P.; Gottlieb, C. A.; Maes, S.; Van de Sande, M.; Decin, L.; Richards, A. M. S.; Baudry, A.; Bolte, J.; Ceulemans, T.; De Ceuster, F.; de Koter, A.; Mellah, I. El; Esseldeurs, M. (6 December 2023). "ATOMIUM: Molecular inventory of 17 oxygen-rich evolved stars observed with ALMA". Astronomy & Astrophysics. 681: A50. arXiv:2312.03467. doi:10.1051/0004-6361/202347632. ISSN 0004-6361.
- ^ Soubiran, C.; Creevey, O. L.; Lagarde, N.; Brouillet, N.; Jofré, P.; Casamiquela, L.; Heiter, U.; Aguilera-Gómez, C.; Vitali, S.; Worley, C.; de Brito Silva, D. (1 February 2024). "Gaia FGK benchmark stars: Fundamental Teff and log g of the third version". Astronomy and Astrophysics. 682: A145. arXiv:2310.11302. Bibcode:2024A&A...682A.145S. doi:10.1051/0004-6361/202347136. ISSN 0004-6361. Note: See VizieR catalogue
- ^ Mozurkewich, D.; Armstrong, J. T.; Hindsley, R. B.; Quirrenbach, A.; Hummel, C. A.; Hutter, D. J.; Johnston, K. J.; Hajian, A. R.; Elias II, Nicholas M.; Buscher, D. F.; Simon, R. S. (November 2003). "Angular Diameters of Stars from the Mark III Optical Interferometer". The Astronomical Journal. 126 (5): 2502–2520. Bibcode:2003AJ....126.2502M. doi:10.1086/378596. ISSN 0004-6256.
- ^ Gatewood, George (1 July 2008). "Astrometric Studies of Aldebaran, Arcturus, Vega, the Hyades, and Other Regions". The Astronomical Journal. 136 (1): 452–460. Bibcode:2008AJ....136..452G. doi:10.1088/0004-6256/136/1/452. ISSN 0004-6256.
- ^ Bailer-Jones, C. A. L.; Rybizki, J.; Fouesneau, M.; Demleitner, M.; Andrae, R. (2021). "Estimating Distances from Parallaxes. V. Geometric and Photogeometric Distances to 1.47 Billion Stars in Gaia Early Data Release 3". The Astronomical Journal. 161 (3): 147. arXiv:2012.05220. Bibcode:2021AJ....161..147B. doi:10.3847/1538-3881/abd806. S2CID 228063812. Data about this star can be seen here.
- ^ Arroyo-Torres, B.; et al. (June 2014). "VLTI/AMBER observations of cold giant stars: atmospheric structures and fundamental parameters". Astronomy & Astrophysics. 566: 11. arXiv:1404.7384. Bibcode:2014A&A...566A..88A. doi:10.1051/0004-6361/201323264. S2CID 16778588. A88.
- ^ Richichi, A.; Percheron, I.; Khristoforova, M. (1 February 2005). "CHARM2: An updated Catalog of High Angular Resolution Measurements". Astronomy and Astrophysics. 431 (2): 773–777. Bibcode:2005A&A...431..773R. doi:10.1051/0004-6361:20042039. ISSN 0004-6361.
- ^ Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
- ^ Min, Cheulhong; Matsumoto, Naoko; Kim, Mi Kyoung; Hirota, Tomoya; Shibata, Katsunori M.; Cho, Se-Hyung; Shizugami, Makoto; Honma, Mareki (1 April 2014). "Accurate Parallax Measurement toward the Symbiotic Star R Aquarii". Publications of the Astronomical Society of Japan. 66 (2): 38. arXiv:1401.5574. doi:10.1093/pasj/psu003. ISSN 2053-051X.
- ^ Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
- ^ Perrin, G.; Ridgway, S. T.; Verhoelst, T.; Schuller, P. A.; Traub, W. A.; Millan-Gabet, R.; Lacasse, M. G. (1 June 2005). "Study of molecular layers in the atmosphere of the supergiant star μ Cep by interferometry in the K band". Astronomy & Astrophysics. 436 (1): 317–324. arXiv:astro-ph/0502415. Bibcode:2005A&A...436..317P. doi:10.1051/0004-6361:20042313. ISSN 0004-6361.
- ^ Davies, Ben; Beasor, Emma R. (2020). "The 'red supergiant problem': The upper luminosity boundary of Type II supernova progenitors". Monthly Notices of the Royal Astronomical Society. 493: 468–476. arXiv:2001.06020. doi:10.1093/mnras/staa174. Retrieved 3 October 2024.
- ^ "HD 6860 Overview". NASA Exoplanet Archive. Retrieved 7 June 2024.
- ^ Wittkowski, M.; et al. (December 2006), "Tests of stellar model atmospheres by optical interferometry. IV. VINCI interferometry and UVES spectroscopy of Menkar", Astronomy and Astrophysics, 460 (3): 855–864, arXiv:astro-ph/0610150, Bibcode:2006A&A...460..855W, doi:10.1051/0004-6361:20066032, S2CID 16525827
External links
- Giant Stars An interactive website comparing the Earth and the Sun to some of the largest known stars
- Three largest stars identified BBC News
- What is the Biggest Star in the Universe? Universe Today