Personal Anchor System
Advances in equipment are a key part of the rock climbing history, starting with the climbing rope. Modern devices enable climbers to perform tasks previously done manually, with greater control – in all conditions – and with less effort. Examples of replacements include the harness (replaced tying the rope around the waist), the carabiner (replaced many knots), the descender/abseil device (replaced the dülfersitz), the ascender (replaced the prusik knot), the belay device (replaced the body belay), and nuts/hexes (replaced chockstones).
Modern equipment includes dynamic ropes, plyometric training tools, advanced spring-loaded camming devices (SLCDs) for protection, and advanced rope control devices such as self-locking devices (SLDs), progress capture devices (PCDs), and assisted braking devices (ABDs). Modern equipment uses advanced materials that are increasingly more durable, stronger, and lighter (e.g. spectra/dyneema and aluminum alloys). The equipment must meet specific standards (e.g. the UIAA standards) for strength, durability, and reliability, and must be certified and tested against such standards with individual pieces carrying such certification marks.
Use and certification
Type of climbing
The rock-climbing equipment needed varies materially depending on the type of rock climbing being undertaken. Starting from the least equipment-intensive type of climbing, the general equipment needs are as follows:
- Free solo climbing, and its deep-water soloing variant, require the least equipment as no climbing protection or ropes are used. Equipment is generally limited to climbing shoes and chalk with a chalk bag.
- Bouldering, and its competition bouldering variant, uses the same basic equipment of free soloing but with the optional addition of bouldering mats, which are also called crash mats or crash pads.
- Top rope climbing, and its competition speed climbing variant, adds a rope, harness, and belay device. The rope is hung prior to the climb from the anchor point at the top, typically by carabiners, slings, or cord, or some combination thereof.
- Sport climbing, and its competition lead climbing variant, adds quickdraws that are clipped into the pre-drilled on-site bolts while the climber is lead climbing the route. No additional climbing protection is needed.
- Traditional climbing requires most of the equipment of the above disciplines but with the addition of extensive climbing protection equipment (nuts, hexes, and SLCDs), which the climber will insert while lead climbing the route. The weight of the extra protection may require a stronger harness or a gear sling.
- Multi-pitch climbing, which can be done in sport or traditional formats, requires added rope devices like ascenders and descenders for moving up and down fixed-ropes. The big wall variant requires heavy-duty rope devices for carrying more gear such as portaledges and provisions, which are carried in haul bags.
- Rope solo climbing is done in many formats (sport, traditional, multi-pitch), and needs an extensive range of rope devices as every pitch needs to be solo climbed (using self-locking devices or SLDs), descended back down (using descenders), and then re-ascended (using ascenders). The simpler variant of top rope solo climbing, only requires the SLDs.
- Aid climbing, and its clean aid climbing variant, is usually done in a traditional format and also more likely on multi-pitch and big wall routes. In addition to the standard equipment for such routes, aid climbing uses specialist equipment such as aiders and daisy chains, as well as hammers for pitons and copperheads.
Certification
Rock-climbing equipment is broadly classed as Personal Protective Equipment (PPE). The International Climbing and Mountaineering Federation (known as the UIAA) was an important early body—and the only body pre-1995—in setting standards for climbing equipment. The UIAA Safety Commission continues to play a central worldwide role in this area. The European Committee for Standardization (CEN) is also an important major regulatory body for PPE, and which works closely with the UIAA Safety Commission through its CEN Working Group for Mountaineering Equipment.
North America has fewer specific regulations as rock-climbing equipment is not classed as military or professional PPE and thus does not fall under the American Occupational Safety and Health Administration (OSHA) regulations; in effect, the UIAA and CEN have become the most important bodies for setting standards and regulating rock-climbing equipment worldwide, and most major manufacturers, and distributors, produce equipment certified and stamped with UIAA and CE marking. After the United Kingdom left the European Union, it adopted the UKCA certification in place of the CEN.
Ropes and slings
Ropes
Modern climbing ropes are 50–80 metres (160–260 ft) in length—the longer versions are for multi-pitch climbing—and have a kernmantle construction consisting of a core kern of twisted nylon fibers and an outer sheath mantle of woven colored coarse nylon fibers. They are either dynamic ropes, which can stretch to absorb the energy of a falling climber, or are the less expensive but more hard-wearing static ropes, which are only for use in constant-load situations such as descending (e.g. abseiling) and ascending (e.g. jumaring).
Some climbers will use a single full-thickness climbing rope with a diameter of approximately 9 to 11 mm (0.35 to 0.43 in), and some will use double ropes, or "half-ropes", to reduce rope drag (e.g. one rope is clipped into any given anchor or protection point), which have a reduced thickness of approximately 8 to 9 mm (0.31 to 0.35 in) to limit the weight of the extra rope. Twin roping uses two thinner ropes, typically 7 to 8 mm (0.28 to 0.31 in) in thickness, which are both clipped into each protection point. Twin roping is thus not used for reducing rope drag, but to have a backup rope on long climbs.
Slings
Modern webbing (or "tape") is made of strong tubular nylon or the even stronger spectra/dyneema material. Climbers use webbing that has been sewn using a certified standard of reinforced stitching into various lengths of closed loops called "slings" (or "runners"). They can be used in a wide range of situations, including wrapping around sections of rock for abseiling, creating belay anchors, or as passive protection, or tied to other equipment—often via carabiners—to create a longer version of a quickdraw or a makeshift lanyard.
Slings can be made into more complex pieces of equipment such as the daisy chain, which is used in aid climbing, and the personal anchor system, which is used in securing a climber to a fixed anchor point.
Cords
While lengths of webbing can be tied via a knot, such as a water knot, to create custom-length loops instead of the pre-sewn fixed-length slings, their load-bearing capacity can be materially reduced making them less safe. Climbers instead use cord (or "accessory cord"), which is a length of thinner approximately 4 to 8 mm (0.16 to 0.31 in) static kernmantle rope, tied via a double fisherman's knot into closed loops of any size.
Cord loops (also known as "cordelettes") serve a wide variety of functions in rock climbing. Uses include creating friction prusik knots for ascending or gripping fixed climbing ropes, usually using thinner approximately 5 to 6 mm (0.20 to 0.24 in) cord, or for attaching to, and equalizing forces across, multiple fixed anchors points, such as when setting up abseil or belay anchors on multi-pitch climbing routes, usually using thicker approximately 7 to 8 mm (0.28 to 0.31 in) cord.
Rope connectors
Several modern pieces of rope connecting equipment help climbers to securely attach items to the climbing rope, such as themselves via a modern climbing harness, or their various protection devices via modern carabiners and quickdraws. Before the invention of these pieces of rope-connecting equipment, climbers used alternative techniques such as looping the rope around the body instead of a harness (e.g. the body belay) and looping the rope around various rocks as a form of protection. In addition to these early techniques, climbers also used various climbing knots to tie ropes and anchor points together, which are now all replaced by rope-connecting equipment such as carabiners.
Carabiners
Carabiners are closed metal clips with spring-loaded gates that are used as connectors between the rope and various devices. Modern carabiners are made from a lightweight but strong aluminum alloy that can withstand the load of a fall. Carabiners come in various shapes, with the asymmetric/offset D-shape being the most common, and gate styles (e.g. a straight gate or a bent gate). A particular variation is whether the gate is locking, which gives extra security when belaying but makes the carabiner heavier and slightly tricker to clip into, or non-locking, which is the easiest to clip into and out of for example when leading a bolted sport climbing route but with the risk that the gate may unintentionally open.
Harnesses
Climbing harnesses are used for connecting the rope to the climber via a "belay loop" on the harness. Harnesses are made of strong materials to specific strength guidelines that can withstand the load of a major fall. There are many types of harness designs and materials used depending on the type of climbing undertaken. Examples include minimal "sit" harnesses for sport climbing as they require little in the way of gear-carrying loops, lightweight and detachable leg-loop harnesses for alpine climbing that fit around heaving winter clothing, padded harnesses for big wall climbing that give comfort for hanging belays and abseils, and chest/full-body harnesses for children or carrying heavy loads.
Lanyards
Lanyards (or "teather", or "via ferrata set") are much longer versions of quickdraws that attach from a harness to a rope (or other anchor points, such as a metal cable). The difference is that lanyards are much stronger than quickdraws and are capable of withstanding fall factors of 2 as found on via ferrata or on multi-pitch climbing routes. They are often made from materials that can absorb dynamic energy and often come with additional optional fall energy absorption devices, and lanyards that have had heavy falls often have to be discarded. Lanyards are also constructed to be sufficiently flexible to resist being twisted.
Personal anchor systems
A sub-class of lanyards is the personal anchor system (PAS), which is a section of rope or interconnected chains of slings, which are used to tie the harness to an anchor point such as a belay station. Traditionally, climbers would tie their harness to anchors using part of the climbing rope; however, the PAS has become popular as a way to avoid reducing the effective length of the climbing rope, and to use a more straightforward connection.
Quickdraws
Quickdraws are used by climbers to connect ropes to fixed points such as bolted anchors in sport climbing, or protection devices in traditional climbing. The quickdraw consists of two non-locking carabiners connected by a short, pre-sewn loop of webbing. They are used to reduce the friction and drag between the rope and the fixed point that can occur when the rope is just clipped into a carabiner clipped into the fixed point. In competition climbing, the quickdraws are already hanging from the pre-fixed bolts, which is called pinkpointing in sport climbing. The quickdraws used in advanced sport and in competition climbing routes often have a "bent gate" on the lower carabiner to make clipping-into the quickdraw even easier.
Rope devices
Several devices are used for controlling the rope (e.g. belay devices and self-locking devices), moving up the rope (e.g. ascender devices), or moving down the rope (e.g. rappel/abseil or descender devices). These actions were historically performed by climbers with no mechanical devices (e.g. the body belay for belaying, the dülfersitz abseil for descending, and the prusik knot for ascending), and these mechanical devices help with both control and safety in all conditions (e.g. wet or icy ropes).
Ascenders
Ascenders (also called "jumars" or "crolls" after popular brands) are mechanical devices to enable a climber to move up a fixed rope, which is a static rope that is hanging from a fixed anchor. Ascenders perform the same basic function as friction or prusik knots made from cord but far less effort and concentration are needed to use them (e.g. tired climbers at high-altitude), they can handle much heavier loads (e.g. climbers with ruck-sacks), and they are more reliable in all conditions (e.g. on wet and icy ropes). The ascender uses an internal cam that allows the device to slide freely in one direction but tightly grip the rope when pulled on in the opposite direction. To prevent the ascender device from accidentally falling off the rope, a locking carabiner is also used.
Belay devices
Belay devices are mechanical friction-brake devices used to control the climbing rope(s) when belaying a climber. Their main purpose is to allow the rope to be locked off or fully braked with minimal effort when arresting a climber's fall. There are many kinds of belay devices, such as the original passive braking devices like "sticht plates" and the later "tubers/tubulars" (e.g. the original Black Diamond ATC, or the Petzl Reverso).
The range of modern belay devices also includes auto-block devices (e.g. the GiGi) allowing the belay device to be attached to a separate anchor point (e.g. and not to the belayer, which is useful for bringing up the second-climber on multi-pitch routes), and active assisted-braking devices (ABDs) that will self-lock with sudden rope movements (e.g. the Petzl GriGri or the Wild Country Revo). Some passive belay devices may also be used as descenders for abseiling.
Indoor climbing walls can provide on-site fixed mechanical auto belay devices that enable the climber to top rope a route alone; more recent lead auto belay models allow the climber to also lead climb the route alone.