Loading
  • 21 Aug, 2019

  • By, Wikipedia

Table Of Prime Factors

The tables contain the prime factorization of the natural numbers from 1 to 1000.

When n is a prime number, the prime factorization is just n itself, written in bold below.

The number 1 is called a unit. It has no prime factors and is neither prime nor composite.

Properties

Many properties of a natural number n can be seen or directly computed from the prime factorization of n.

  • The multiplicity of a prime factor p of n is the largest exponent m for which p divides n. The tables show the multiplicity for each prime factor. If no exponent is written then the multiplicity is 1 (since p = p). The multiplicity of a prime which does not divide n may be called 0 or may be considered undefined.
  • Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities).
  • A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers.
  • A composite number has Ω(n) > 1. The first: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21 (sequence A002808 in the OEIS). All numbers above 1 are either prime or composite. 1 is neither.
  • A semiprime has Ω(n) = 2 (so it is composite). The first: 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34 (sequence A001358 in the OEIS).
  • A k-almost prime (for a natural number k) has Ω(n) = k (so it is composite if k > 1).
  • An even number has the prime factor 2. The first: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 (sequence A005843 in the OEIS).
  • An odd number does not have the prime factor 2. The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 (sequence A005408 in the OEIS). All integers are either even or odd.
  • A square has even multiplicity for all prime factors (it is of the form a for some a). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 (sequence A000290 in the OEIS).
  • A cube has all multiplicities divisible by 3 (it is of the form a for some a). The first: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728 (sequence A000578 in the OEIS).
  • A perfect power has a common divisor m > 1 for all multiplicities (it is of the form a for some a > 1 and m > 1). The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is sometimes included.
  • A powerful number (also called squareful) has multiplicity above 1 for all prime factors. The first: 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72 (sequence A001694 in the OEIS).
  • A prime power has only one prime factor. The first: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19 (sequence A000961 in the OEIS). 1 is sometimes included.
  • An Achilles number is powerful but not a perfect power. The first: 72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968 (sequence A052486 in the OEIS).
  • A square-free integer has no prime factor with multiplicity above 1. The first: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17 (sequence A005117 in the OEIS). A number where some but not all prime factors have multiplicity above 1 is neither square-free nor squareful.
  • The Liouville function λ(n) is 1 if Ω(n) is even, and is -1 if Ω(n) is odd.
  • The Möbius function μ(n) is 0 if n is not square-free. Otherwise μ(n) is 1 if Ω(n) is even, and is −1 if Ω(n) is odd.
  • A sphenic number has Ω(n) = 3 and is square-free (so it is the product of 3 distinct primes). The first: 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154 (sequence A007304 in the OEIS).
  • a0(n) is the sum of primes dividing n, counted with multiplicity. It is an additive function.
  • A Ruth-Aaron pair is two consecutive numbers (x, x+1) with a0(x) = a0(x+1). The first (by x value): 5, 8, 15, 77, 125, 714, 948, 1330, 1520, 1862, 2491, 3248 (sequence A039752 in the OEIS). Another definition is where the same prime is only counted once; if so, the first (by x value): 5, 24, 49, 77, 104, 153, 369, 492, 714, 1682, 2107, 2299 (sequence A006145 in the OEIS).
  • A primorial x# is the product of all primes from 2 to x. The first: 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810 (sequence A002110 in the OEIS). 1# = 1 is sometimes included.
  • A factorial x! is the product of all numbers from 1 to x. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 (sequence A000142 in the OEIS). 0! = 1 is sometimes included.
  • A k-smooth number (for a natural number k) has its prime factors ≤ k (so it is also j-smooth for any j > k).
  • m is smoother than n if the largest prime factor of m is below the largest of n.
  • A regular number has no prime factor above 5 (so it is 5-smooth). The first: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16 (sequence A051037 in the OEIS).
  • A k-powersmooth number has all pk where p is a prime factor with multiplicity m.
  • A frugal number has more digits than the number of digits in its prime factorization (when written like the tables below with multiplicities above 1 as exponents). The first in decimal: 125, 128, 243, 256, 343, 512, 625, 729, 1024, 1029, 1215, 1250 (sequence A046759 in the OEIS).
  • An equidigital number has the same number of digits as its prime factorization. The first in decimal: 1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17 (sequence A046758 in the OEIS).
  • An extravagant number has fewer digits than its prime factorization. The first in decimal: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30 (sequence A046760 in the OEIS).
  • An economical number has been defined as a frugal number, but also as a number that is either frugal or equidigital.
  • gcd(m, n) (greatest common divisor of m and n) is the product of all prime factors which are both in m and n (with the smallest multiplicity for m and n).
  • m and n are coprime (also called relatively prime) if gcd(m, n) = 1 (meaning they have no common prime factor).
  • lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n).
  • gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require known prime factorization.
  • m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n.

The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.

1 to 100

1 − 20
1
2 2
3 3
4 2
5 5
6 2·3
7 7
8 2
9 3
10 2·5
11 11
12 2·3
13 13
14 2·7
15 3·5
16 2
17 17
18 2·3
19 19
20 2·5
21 − 40
21 3·7
22 2·11
23 23
24 2·3
25 5
26 2·13
27 3
28 2·7
29 29
30 2·3·5
31 31
32 2
33 3·11
34 2·17
35 5·7
36 2·3
37 37
38 2·19
39 3·13
40 2·5
41 − 60
41 41
42 2·3·7
43 43
44 2·11
45 3·5
46 2·23
47 47
48 2·3
49 7
50 2·5
51 3·17
52 2·13
53 53
54 2·3
55 5·11
56 2·7
57 3·19
58 2·29
59 59
60 2·3·5
61 − 80
61 61
62 2·31
63 3·7
64 2
65 5·13
66 2·3·11
67 67
68 2·17
69 3·23
70 2·5·7
71 71
72 2·3
73 73
74 2·37
75 3·5
76 2·19
77 7·11
78 2·3·13
79 79
80 2·5
81 − 100
81 3
82 2·41
83 83
84 2·3·7
85 5·17
86 2·43
87 3·29
88 2·11
89 89
90 2·3·5
91 7·13
92 2·23
93 3·31
94 2·47
95 5·19
96 2·3
97 97
98 2·7
99 3·11
100 2·5

101 to 200

101 − 120
101 101
102 2·3·17
103 103
104 2·13
105 3·5·7
106 2·53
107 107
108 2·3
109 109
110 2·5·11
111 3·37
112 2·7
113 113
114 2·3·19
115 5·23
116 2·29
117 3·13
118 2·59
119 7·17
120 2·3·5
121 − 140
121 11
122 2·61
123 3·41
124 2·31
125 5
126 2·3·7
127 127
128 2
129 3·43
130 2·5·13
131 131
132 2·3·11
133 7·19
134 2·67
135 3·5
136 2·17
137 137
138 2·3·23
139 139
140 2·5·7
141 − 160
141 3·47
142 2·71
143 11·13
144 2·3
145 5·29
146 2·73
147 3·7
148 2·37
149 149
150 2·3·5
151 151
152 2·19
153 3·17
154 2·7·11
155 5·31
156 2·3·13
157 157
158 2·79
159 3·53
160 2·5
161 − 180
161 7·23
162 2·3
163 163
164 2·41
165 3·5·11
166 2·83
167 167
168 2·3·7
169 13
170 2·5·17
171 3·19
172 2·43
173 173
174 2·3·29
175 5·7
176 2·11
177 3·59
178 2·89
179 179
180 2·3·5
181 − 200
181 181
182 2·7·13
183 3·61
184 2·23
185 5·37
186 2·3·31
187 11·17
188 2·47
189 3·7
190 2·5·19
191 191
192 2·3
193 193
194 2·97
195 3·5·13
196 2·7
197 197
198 2·3·11
199 199
200 2·5

201 to 300

201 − 220
201 3·67
202 2·101
203 7·29
204 2·3·17
205 5·41
206 2·103
207 3·23
208 2·13
209 11·19
210 2·3·5·7
211 211
212 2·53
213 3·71
214 2·107
215 5·43
216 2·3
217 7·31
218 2·109
219 3·73
220 2·5·11
221 − 240
221 13·17
222 2·3·37
223 223
224 2·7
225 3·5
226 2·113
227 227
228 2·3·19
229 229
230 2·5·23
231 3·7·11
232 2·29
233 233
234 2·3·13
235 5·47
236 2·59
237 3·79
238 2·7·17
239 239
240 2·3·5
241 − 260
241 241
242 2·11
243 3
244 2·61
245 5·7
246 2·3·41
247 13·19
248 2·31
249 3·83
250 2·5
251 251
252 2·3·7
253 11·23
254 2·127
255 3·5·17
256 2
257 257
258 2·3·43
259 7·37
260 2·5·13
261 − 280
261 3·29
262 2·131
263 263
264 2·3·11
265 5·53
266 2·7·19
267 3·89
268 2·67
269 269
270 2·3·5
271 271
272 2·17
273 3·7·13
274 2·137
275 5·11
276 2·3·23
277 277
278 2·139
279 3·31
280 2·5·7
281 − 300
281 281
282 2·3·47
283 283
284 2·71
285 3·5·19
286 2·11·13
287 7·41
288 2·3
289 17
290 2·5·29
291 3·97
292 2·73
293 293
294 2·3·7
295 5·59
296 2·37
297 3·11
298 2·149
299 13·23
300 2·3·5

301 to 400

301 − 320
301 7·43
302 2·151
303 3·101
304 2·19
305 5·61
306 2·3·17
307 307
308 2·7·11
309 3·103
310 2·5·31
311 311
312 2·3·13
313 313
314 2·157
315 3·5·7
316 2·79
317 317
318 2·3·53
319 11·29
320 2·5
321 − 340
321 3·107
322 2·7·23
323 17·19
324 2·3
325 5·13
326 2·163
327 3·109
328 2·41
329 7·47
330 2·3·5·11
331 331
332 2·83
333 3·37
334 2·167
335 5·67
336 2·3·7
337 337
338 2·13
339 3·113
340 2·5·17
341 − 360
341 11·31
342 2·3·19
343 7
344 2·43
345 3·5·23
346 2·173
347 347
348 2·3·29
349 349
350 2·5·7
351 3·13
352 2·11
353 353
354 2·3·59
355 5·71
356 2·89
357 3·7·17
358 2·179
359 359
360 2·3·5
361 − 380
361 19
362 2·181
363 3·11
364 2·7·13
365 5·73
366 2·3·61
367 367
368 2·23
369 3·41
370 2·5·37
371 7·53
372 2·3·31
373 373
374 2·11·17
375 3·5
376 2·47
377 13·29
378 2·3·7
379 379
380 2·5·19
381 − 400
381 3·127
382 2·191
383 383
384 2·3
385 5·7·11
386 2·193
387 3·43
388 2·97
389 389
390 2·3·5·13
391 17·23
392 2·7
393 3·131
394 2·197
395 5·79
396 2·3·11
397 397
398 2·199
399 3·7·19
400 2·5

401 to 500

401 − 420
401 401
402 2·3·67
403 13·31
404 2·101
405 3·5
406 2·7·29
407 11·37
408 2·3·17
409 409
410 2·5·41
411 3·137
412 2·103
413 7·59
414 2·3·23
415 5·83
416 2·13
417 3·139
418 2·11·19
419 419
420 2·3·5·7
421 − 440
421 421
422 2·211
423 3·47
424 2·53
425 5·17
426 2·3·71
427 7·61
428 2·107
429 3·11·13
430 2·5·43
431 431
432 2·3
433 433
434 2·7·31
435 3·5·29
436 2·109
437 19·23
438 2·3·73
439 439
440 2·5·11
441 − 460
441 3·7
442 2·13·17
443 443
444 2·3·37
445 5·89
446 2·223
447 3·149
448 2·7
449 449
450 2·3·5
451 11·41
452 2·113
453 3·151
454 2·227
455 5·7·13
456 2·3·19
457 457
458 2·229
459 3·17
460 2·5·23
461 − 480
461 461
462 2·3·7·11
463 463
464 2·29
465 3·5·31
466 2·233
467 467
468 2·3·13
469 7·67
470 2·5·47
471 3·157
472 2·59
473 11·43
474 2·3·79
475 5·19
476 2·7·17
477 3·53
478 2·239
479 479
480 2·3·5
481 − 500
481 13·37
482 2·241
483 3·7·23
484 2·11
485 5·97
486 2·3
487 487
488 2·61
489 3·163
490 2·5·7
491 491
492 2·3·41
493 17·29
494 2·13·19
495 3·5·11
496 2·31
497 7·71
498 2·3·83
499 499
500 2·5

501 to 600

501 − 520
501 3·167
502 2·251
503 503
504 2·3·7
505 5·101
506 2·11·23
507 3·13
508 2·127
509 509
510 2·3·5·17
511 7·73
512 2
513 3·19
514 2·257
515 5·103
516 2·3·43
517 11·47
518 2·7·37
519 3·173
520 2·5·13
521 − 540
521 521
522 2·3·29
523 523
524 2·131
525 3·5·7
526 2·263
527 17·31
528 2·3·11
529 23
530 2·5·53
531 3·59
532 2·7·19
533 13·41
534 2·3·89
535 5·107
536 2·67
537 3·179
538 2·269
539 7·11
540 2·3·5
541 − 560
541 541
542 2·271
543 3·181
544 2·17
545 5·109
546 2·3·7·13
547 547
548 2·137
549 3·61
550 2·5·11
551 19·29
552 2·3·23
553 7·79
554 2·277
555 3·5·37
556 2·139
557 557
558 2·3·31
559 13·43
560 2·5·7
561 − 580
561 3·11·17
562 2·281
563 563
564 2·3·47
565 5·113
566 2·283
567 3·7
568 2·71
569 569
570 2·3·5·19
571 571
572 2·11·13
573 3·191
574 2·7·41
575 5·23
576 2·3
577 577
578 2·17
579 3·193
580 2·5·29
581 − 600
581 7·83
582 2·3·97
583 11·53
584 2·73
585 3·5·13
586 2·293
587 587
588 2·3·7
589 19·31
590 2·5·59
591 3·197
592 2·37
593 593
594 2·3·11
595 5·7·17
596 2·149
597 3·199
598 2·13·23
599 599
600 2·3·5

601 to 700

601 − 620
601 601
602 2·7·43
603 3·67
604 2·151
605 5·11
606 2·3·101
607 607
608 2·19
609 3·7·29
610 2·5·61
611 13·47
612 2·3·17
613 613
614 2·307
615 3·5·41
616 2·7·11
617 617
618 2·3·103
619 619
620 2·5·31
621 − 640
621 3·23
622 2·311
623 7·89
624 2·3·13
625 5
626 2·313
627 3·11·19
628 2·157
629 17·37
630 2·3·5·7
631 631
632 2·79
633 3·211
634 2·317
635 5·127
636 2·3·53
637 7·13
638 2·11·29
639 3·71
640 2·5
641 − 660
641 641
642 2·3·107
643 643
644 2·7·23
645 3·5·43
646 2·17·19
647 647
648 2·3
649 11·59
650 2·5·13
651 3·7·31
652 2·163
653 653
654 2·3·109
655 5·131
656 2·41
657 3·73
658 2·7·47
659 659
660 2·3·5·11
661 − 680
661 661
662 2·331
663 3·13·17
664 2·83
665 5·7·19
666 2·3·37
667 23·29
668 2·167
669 3·223
670 2·5·67
671 11·61
672 2·3·7
673 673
674 2·337
675 3·5
676 2·13
677 677
678 2·3·113
679 7·97
680 2·5·17
681 − 700
681 3·227
682 2·11·31
683 683
684 2·3·19
685 5·137
686 2·7
687 3·229
688 2·43
689 13·53
690 2·3·5·23
691 691
692 2·173
693 3·7·11
694 2·347
695 5·139
696 2·3·29
697 17·41
698 2·349
699 3·233
700 2·5·7

701 to 800

701 − 720
701 701
702 2·3·13
703 19·37
704 2·11
705 3·5·47
706 2·353
707 7·101
708 2·3·59
709 709
710 2·5·71
711 3·79
712 2·89
713 23·31
714 2·3·7·17
715 5·11·13
716 2·179
717 3·239
718 2·359
719 719
720 2·3·5
721 − 740
721 7·103
722 2·19
723 3·241
724 2·181
725 5·29
726 2·3·11
727 727
728 2·7·13
729 3
730 2·5·73
731 17·43
732 2·3·61
733 733
734 2·367
735 3·5·7
736 2·23
737 11·67
738 2·3·41
739 739
740 2·5·37
741 − 760
741 3·13·19
742 2·7·53
743 743
744 2·3·31
745 5·149
746 2·373
747 3·83
748 2·11·17
749 7·107
750 2·3·5
751 751
752 2·47
753 3·251
754 2·13·29
755 5·151
756 2·3·7
757 757
758 2·379
759 3·11·23
760 2·5·19
761 − 780
761 761
762 2·3·127
763 7·109
764 2·191
765 3·5·17
766 2·383
767 13·59
768 2·3
769 769
770 2·5·7·11
771 3·257
772 2·193
773 773
774 2·3·43
775 5·31
776 2·97
777 3·7·37
778 2·389
779 19·41
780 2·3·5·13
781 − 800
781 11·71
782 2·17·23
783 3·29
784 2·7
785 5·157
786 2·3·131
787 787
788 2·197
789 3·263
790 2·5·79
791 7·113
792 2·3·11
793 13·61
794 2·397
795 3·5·53
796 2·199
797 797
798 2·3·7·19
799 17·47
800 2·5

801 to 900

801 - 820
801 3·89
802 2·401
803 11·73
804 2·3·67
805 5·7·23
806 2·13·31
807 3·269
808 2·101
809 809
810 2·3·5
811 811
812 2·7·29
813 3·271
814 2·11·37
815 5·163
816 2·3·17
817 19·43
818 2·409
819 3·7·13
820 2·5·41
821 - 840
821 821
822 2·3·137
823 823
824 2·103
825 3·5·11
826 2·7·59
827 827
828 2·3·23
829 829
830 2·5·83
831 3·277
832 2·13
833 7·17
834 2·3·139
835 5·167
836 2·11·19
837 3·31
838 2·419
839 839
840 2·3·5·7
841 - 860
841 29
842 2·421
843 3·281
844 2·211
845 5·13
846 2·3·47
847 7·11
848 2·53
849 3·283
850 2·5·17
851 23·37
852 2·3·71
853 853
854 2·7·61
855 3·5·19
856 2·107
857 857
858 2·3·11·13
859 859
860 2·5·43
861 - 880
861 3·7·41
862 2·431
863 863
864 2·3
865 5·173
866 2·433
867 3·17
868 2·7·31
869 11·79
870 2·3·5·29
871 13·67
872 2·109
873 3·97
874 2·19·23
875 5·7
876 2·3·73
877 877
878 2·439
879 3·293
880 2·5·11
881 - 900
881 881
882 2·3·7
883 883
884 2·13·17
885 3·5·59
886 2·443
887 887
888 2·3·37
889 7·127
890 2·5·89
891 3·11
892 2·223
893 19·47
894 2·3·149
895 5·179
896 2·7
897 3·13·23
898 2·449
899 29·31
900 2·3·5

901 to 1000

901 - 920
901 17·53
902 2·11·41
903 3·7·43
904 2·113
905 5·181
906 2·3·151
907 907
908 2·227
909 3·101
910 2·5·7·13
911 911
912 2·3·19
913 11·83
914 2·457
915 3·5·61
916 2·229
917 7·131
918 2·3·17
919 919
920 2·5·23
921 - 940
921 3·307
922 2·461
923 13·71
924 2·3·7·11
925 5·37
926 2·463
927 3·103
928 2·29
929 929
930 2·3·5·31
931 7·19
932 2·233
933 3·311
934 2·467
935 5·11·17
936 2·3·13
937 937
938 2·7·67
939 3·313
940 2·5·47
941 - 960
941 941
942 2·3·157
943 23·41
944 2·59
945 3·5·7
946 2·11·43
947 947
948 2·3·79
949 13·73
950 2·5·19
951 3·317
952 2·7·17
953 953
954 2·3·53
955 5·191
956 2·239
957 3·11·29
958 2·479
959 7·137
960 2·3·5
961 - 980
961 31
962 2·13·37
963 3·107
964 2·241
965 5·193
966 2·3·7·23
967 967
968 2·11
969 3·17·19
970 2·5·97
971 971
972 2·3
973 7·139
974 2·487
975 3·5·13
976 2·61
977 977
978 2·3·163
979 11·89
980 2·5·7
981 - 1000
981 3·109
982 2·491
983 983
984 2·3·41
985 5·197
986 2·17·29
987 3·7·47
988 2·13·19
989 23·43
990 2·3·5·11
991 991
992 2·31
993 3·331
994 2·7·71
995 5·199
996 2·3·83
997 997
998 2·499
999 3·37
1000 2·5

See also