Loading
  • 21 Aug, 2019

  • By, Wikipedia

Template:Infobox Seaborgium

child table, as reused in {IB-Sg}
Main isotopes of seaborgium
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Sg synth 8.5 s α Rf
Sg synth 14.4 s α Rf
Sg synth 9.8 min α Rf
Sg synth 100 s SF
Sg synth 13 s SF
Sg synth 5 min α Rf
Sg synth 31 s α73% Rf
SF27%
Data sets read by {{Infobox element}}
Name and identifiers
Symbol etymology (11 non-trivial)
Top image (caption, alt)
Pronunciation
Allotropes (overview)
Group (overview)
Period (overview)
Block (overview)
Natural occurrence
Phase at STP
Oxidation states
Spectral lines image
Electron configuration (cmt, ref)
Isotopes
Standard atomic weight
  most stable isotope
Wikidata
Wikidata *
* Not used in {{Infobox element}} (2023-01-01)
See also {{Index of data sets}} · Cat:data sets (45) · (this table: )

References

  1. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Shumeiko, M. V.; et al. (6 May 2024). "Synthesis and decay properties of isotopes of element 110: Ds 273 and Ds 275". Physical Review C. 109 (5): 054307. doi:10.1103/PhysRevC.109.054307. ISSN 2469-9985. Retrieved 11 May 2024.
  2. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  3. ^ Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
  4. ^ Östlin, A.; Vitos, L. (2011). "First-principles calculation of the structural stability of 6d transition metals". Physical Review B. 84 (11): 113104. Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104.
  5. ^ Gyanchandani, Jyoti; Sikka, S. K. (10 May 2011). "Physical properties of the 6 d -series elements from density functional theory: Close similarity to lighter transition metals". Physical Review B. 83 (17): 172101. Bibcode:2011PhRvB..83q2101G. doi:10.1103/PhysRevB.83.172101.
  6. ^ Kratz; Lieser (2013). Nuclear and Radiochemistry: Fundamentals and Applications (3rd ed.). p. 631.
  7. ^ Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
  8. ^ "Periodic Table, Seaborgium". Royal Chemical Society. Retrieved 20 February 2017.
  9. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Shumeiko, M. V.; et al. (2023). "New isotope Ds and its decay products Hs and Sg from the Th + Ca reaction". Physical Review C. 108 (024611). doi:10.1103/PhysRevC.108.024611.
  10. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Ibadullayev, D.; et al. (2022). "Investigation of Ca-induced reactions with Pu and U targets at the JINR Superheavy Element Factory". Physical Review C. 106 (24612). doi:10.1103/PhysRevC.106.024612. S2CID 251759318.
  1. ^ The most stable isotope of seaborgium cannot be determined based on existing data due to uncertainty that arises from the low number of measurements. The half-life of Sg corresponding to one standard deviation is, based on existing data, 9.8+11.3
    −4.5
    minutes, whereas that of Sg is 5±2 minutes; these measurements have overlapping confidence intervals.

References