Loading
  • 21 Aug, 2019

  • By, Wikipedia

Template:Infobox Tennessine

child table, as reused in {IB-Ts}
Main isotopes of tennessine
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Ts synth 25 ms α Mc
Ts synth 51 ms α Mc
Data sets read by {{Infobox element}}
Name and identifiers
Symbol etymology (11 non-trivial)
Top image (caption, alt)
Pronunciation
Allotropes (overview)
Group (overview)
Period (overview)
Block (overview)
Natural occurrence
Phase at STP
Oxidation states
Spectral lines image
Electron configuration (cmt, ref)
Isotopes
Standard atomic weight
  most stable isotope
Wikidata
Wikidata *
* Not used in {{Infobox element}} (2023-01-01)
See also {{Index of data sets}} · Cat:data sets (45) · (this table: )

Notes

  1. ^ The most stable isotope of tennessine cannot be determined based on existing data due to uncertainty that arises from the low number of measurements. The half-life of Ts corresponding to two standard deviations is, based on existing data, 51+76
    −32
    milliseconds, whereas that of Ts is 22+16
    −8
    milliseconds; these measurements have overlapping confidence intervals.

References

  1. ^ Ritter, Malcolm (June 9, 2016). "Periodic table elements named for Moscow, Japan, Tennessee". Associated Press. Retrieved December 19, 2017.
  2. ^ Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
  3. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  4. ^ Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  5. ^ Bonchev, D.; Kamenska, V. (1981). "Predicting the Properties of the 113–120 Transactinide Elements". Journal of Physical Chemistry. 85 (9): 1177–1186. doi:10.1021/j150609a021.
  6. ^ Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong (2010). "Ionization Potentials, Electron Affinities, Resonance Excitation Energies, Oscillator Strengths, And Ionic Radii of Element Uus (Z = 117) and Astatine". J. Phys. Chem. A. 2010 (114): 13388–94. Bibcode:2010JPCA..11413388C. doi:10.1021/jp107411s.
  7. ^ Khuyagbaatar, J.; Yakushev, A.; Düllmann, Ch. E.; et al. (2014). "Ca+Bk Fusion Reaction Leading to Element Z=117: Long-Lived α-Decaying Db and Discovery of Lr". Physical Review Letters. 112 (17): 172501. Bibcode:2014PhRvL.112q2501K. doi:10.1103/PhysRevLett.112.172501. PMID 24836239.
  8. ^ Oganessian, Yu. Ts.; et al. (2013). "Experimental studies of the Bk + Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope Mt". Physical Review C. 87 (5): 054621. Bibcode:2013PhRvC..87e4621O. doi:10.1103/PhysRevC.87.054621.