Triangulum I
The galaxy is the second-smallest spiral galaxy in the Local Group after the Large Magellanic Cloud, which is a Magellanic-type spiral galaxy. It is believed to be a satellite of the Andromeda Galaxy or on its rebound into the latter due to their interactions, velocities, and proximity to one another in the night sky. It also has an H II nucleus.
Etymology
The galaxy gets its name from the constellation Triangulum, where it can be spotted.
It is sometimes informally referred to as the "Pinwheel Galaxy" by some astronomy references, in some computerized telescope software, and in some public outreach websites. However, the SIMBAD Astronomical Database, a professional database, collates formal designations for astronomical objects and indicates that Pinwheel Galaxy refers to Messier 101, which several amateur astronomy resources including public outreach websites identify by that name, and that is within the bounds of Ursa Major.
Visibility
Under exceptionally good viewing conditions with no light pollution, the Triangulum Galaxy can be seen by some people with the fully dark-adapted naked eye; to those viewers, it is the farthest permanent entity visible without magnification, being about half again as distant as Messier 31, the Andromeda Galaxy. It is a diffuse, or extended, object rather than a starlike point, even without magnification, because of its physical extent.
Its observability without optical aid ranges from being relatively easily seen by people using direct vision in deep rural locations under a dark, clear, transparent sky, to requiring use of averted vision by observers in locations beyond the suburbs in shallow rural areas under good viewing conditions. It is one of the reference objects of the Bortle Dark-Sky Scale.
Crumey has shown that although the total apparent V-magnitude of M33 is 5.72, it has an effective visual magnitude of approximately 6.6, meaning that a precondition for visibility is that the observer can see stars at least as faint as that latter figure. This is fainter than many people are able to see, even at a very dark site.
Observation history
The Triangulum Galaxy was probably discovered by the Italian astronomer Giovanni Battista Hodierna before 1654. In his work De systemate orbis cometici; deque admirandis coeli caracteribus ("About the systematics of the cometary orbit, and about the admirable objects of the sky"), he listed it as a cloud-like nebulosity or obscuration and gave the cryptic description, "near the Triangle hinc inde". This is in reference to the constellation Triangulum as a pair of triangles. The magnitude of the object matches M33, so it is most likely a reference to the Triangulum Galaxy.
The galaxy was independently discovered by Charles Messier on the night of August 25–26, 1764. It was published in his Catalog of Nebulae and Star Clusters (1771) as object number 33; hence the name M33. When William Herschel compiled his extensive catalog of nebulae, he was careful not to include most of the objects identified by Messier. However, M33 was an exception, and he cataloged this object on September 11, 1784, as H V-17.
Herschel also cataloged the Triangulum Galaxy's brightest and largest H II region (diffuse emission nebula containing ionized hydrogen) as H III.150 separately from the galaxy itself; the nebula eventually obtained NGC number 604. As seen from Earth, NGC 604 is located northeast of the galaxy's central core. It is one of the largest H II regions known, with a diameter of nearly 1500 light-years and a spectrum similar to that of the Orion Nebula. Herschel also noted three other smaller H II regions (NGC 588, 592, and 595).
It was among the first "spiral nebulae" identified as such by Lord Rosse in 1850. In 1922–23, John Charles Duncan and Max Wolf discovered variable stars in the nebulae. Edwin Hubble showed in 1926 that 35 of these stars were classical Cepheids, thereby allowing him to estimate their distances. The results were consistent with the concept of spiral nebulae being independent galactic systems of gas and dust, rather than just nebulae in the Milky Way.
-
NGC 604 in the Triangulum Galaxy
-
Composite of about 54 different pointings with Hubble's Advanced Camera for Surveys
Properties
The Triangulum Galaxy is the third largest member of the Local Group of galaxies. It has a diameter measured through the D25 standard - the isophote where the surface brightness of the galaxy reaches 25 mag/arcsec, to be about 18.74 kiloparsecs (61,100 light-years), making it roughly 70% the size of the Milky Way. It may be a gravitationally bound companion of the Andromeda Galaxy. Triangulum may be home to 40 billion stars, compared to 400 billion for the Milky Way and 1 trillion for Andromeda.
The disk of Triangulum has an estimated mass of (3–6) × 10 solar masses, while the gas component is about 3.2 × 10 solar masses. Thus, the combined mass of all baryonic matter in the galaxy may be 10 solar masses. The contribution of the dark matter component out to a radius of 55×10 ly (17 kpc) is equivalent to about 5 × 10 solar masses.
Location – distance – motion
Estimates of the distance from the Milky Way to the Triangulum Galaxy range from 2,380×10 to 3,070×10 ly (730 to 940 kpc) (or 2.38 to 3.07 Mly), with most estimates since the year 2000 lying in the middle portion of this range, making it slightly more distant than the Andromeda Galaxy (at 2,540,000 light-years). At least three techniques have been used to measure distances to M 33. Using the Cepheid variable method, an estimate of 2,770×10 ± 130×10 ly (849 ± 40 kpc) was achieved in 2004. In the same year, the tip of the red-giant branch (TRGB) method was used to derive a distance estimate of 2,590×10 ± 80×10 ly (794 ± 25 kpc). The Triangulum Galaxy is around 750,000 light years from the Andromeda Galaxy.
In 2006, a group of astronomers announced the discovery of an eclipsing binary star in the Triangulum Galaxy. By studying the eclipses of the stars, astronomers were able to measure their sizes. Knowing the sizes and temperatures of the stars, they were able to measure the absolute magnitude of the stars. When the visual and absolute magnitudes are known, the distance to the star can be measured. The stars lie at the distance of 3,070×10 ± 240×10 ly (941 ± 74 kpc). The average of 102 distance estimates published since 1987 gives a distance modulus of 24.69, or .883 Mpc (2,878,000 light-years).
The Triangulum Galaxy is a source of H2O maser emission. In 2005, using observations of two water masers on opposite sides of Triangulum via the VLBA, researchers were for the first time able to estimate the angular rotation and proper motion of Triangulum. A velocity of 190 ± 60 km/s relative to the Milky Way was computed, which means Triangulum is moving towards Andromeda Galaxy and suggesting it may be a satellite of the larger galaxy (depending on their relative distances and margins of error).
In 2004, evidence was announced of a clumpy stream of hydrogen gas linking the Andromeda Galaxy with Triangulum, suggesting that the two may have tidally interacted in the past. This discovery was confirmed in 2011. A distance of less than 300 kiloparsecs between the two supports this hypothesis.
The Pisces Dwarf (LGS 3), one of the small Local Group member galaxies, is located 2,022×10 ly (620 kpc) from the Sun. It is 20° from the Andromeda Galaxy and 11° from Triangulum. As LGS 3 lies at a distance of 913×10 ly (280 kpc) from both galaxies, it could be a satellite galaxy of either Andromeda or Triangulum. LGS 3 has a core radius of 483 ly (148 pc) and 2.6 × 10 solar masses.
Pisces VII/Triangulum (Tri) III may be another satellite of Triangulum.