Ultramassive Black Hole
Two supermassive black holes have been directly imaged by the Event Horizon Telescope: the black hole in the giant elliptical galaxy Messier 87 and the black hole at the Milky Way's center (Sagittarius A*).
Description
Supermassive black holes are classically defined as black holes with a mass above 100,000 (10) solar masses (M☉); some have masses of several billion M☉. Supermassive black holes have physical properties that clearly distinguish them from lower-mass classifications. First, the tidal forces in the vicinity of the event horizon are significantly weaker for supermassive black holes. The tidal force on a body at a black hole's event horizon is inversely proportional to the square of the black hole's mass: a person at the event horizon of a 10 million M☉ black hole experiences about the same tidal force between their head and feet as a person on the surface of the Earth. Unlike with stellar-mass black holes, one would not experience significant tidal force until very deep into the black hole's event horizon.
It is somewhat counterintuitive to note that the average density of a SMBH within its event horizon (defined as the mass of the black hole divided by the volume of space within its Schwarzschild radius) can be smaller than the density of water. This is because the Schwarzschild radius () is directly proportional to its mass. Since the volume of a spherical object (such as the event horizon of a non-rotating black hole) is directly proportional to the cube of the radius, the density of a black hole is inversely proportional to the square of the mass, and thus higher mass black holes have a lower average density.
The Schwarzschild radius of the event horizon of a nonrotating and uncharged supermassive black hole of around 1 billion M☉ is comparable to the semi-major axis of the orbit of planet Uranus, which is about 19 AU.
Some astronomers refer to black holes of greater than 5 billion M☉ as ultramassive black holes (UMBHs or UBHs), but the term is not broadly used. Possible examples include the black holes at the cores of TON 618, NGC 6166, ESO 444-46 and NGC 4889, which are among the most massive black holes known.
Some studies have suggested that the maximum natural mass that a black hole can reach, while being luminous accretors (featuring an accretion disk), is typically on the order of about 50 billion M☉. However, a 2020 study suggested even larger black holes, dubbed stupendously large black holes (SLABs), with masses greater than 100 billion M☉, could exist based on used models; some studies place the black hole at the core of Phoenix A in this category.
History of research
The story of how supermassive black holes were found began with the investigation by Maarten Schmidt of the radio source 3C 273 in 1963. Initially this was thought to be a star, but the spectrum proved puzzling. It was determined to be hydrogen emission lines that had been redshifted, indicating the object was moving away from the Earth. Hubble's law showed that the object was located several billion light-years away, and thus must be emitting the energy equivalent of hundreds of galaxies. The rate of light variations of the source dubbed a quasi-stellar object, or quasar, suggested the emitting region had a diameter of one parsec or less. Four such sources had been identified by 1964.
In 1963, Fred Hoyle and W. A. Fowler proposed the existence of hydrogen-burning supermassive stars (SMS) as an explanation for the compact dimensions and high energy output of quasars. These would have a mass of about 10–10 M☉. However, Richard Feynman noted stars above a certain critical mass are dynamically unstable and would collapse into a black hole, at least if they were non-rotating. Fowler then proposed that these supermassive stars would undergo a series of collapse and explosion oscillations, thereby explaining the energy output pattern. Appenzeller and Fricke (1972) built models of this behavior, but found that the resulting star would still undergo collapse, concluding that a non-rotating 0.75×10 M☉ SMS "cannot escape collapse to a black hole by burning its hydrogen through the CNO cycle".
Edwin E. Salpeter and Yakov Zeldovich made the proposal in 1964 that matter falling onto a massive compact object would explain the properties of quasars. It would require a mass of around 10 M☉ to match the output of these objects. Donald Lynden-Bell noted in 1969 that the infalling gas would form a flat disk that spirals into the central "Schwarzschild throat". He noted that the relatively low output of nearby galactic cores implied these were old, inactive quasars. Meanwhile, in 1967, Martin Ryle and Malcolm Longair suggested that nearly all sources of extra-galactic radio emission could be explained by a model in which particles are ejected from galaxies at relativistic velocities, meaning they are moving near the speed of light. Martin Ryle, Malcolm Longair, and Peter Scheuer then proposed in 1973 that the compact central nucleus could be the original energy source for these relativistic jets.
Arthur M. Wolfe and Geoffrey Burbidge noted in 1970 that the large velocity dispersion of the stars in the nuclear region of elliptical galaxies could only be explained by a large mass concentration at the nucleus; larger than could be explained by ordinary stars. They showed that the behavior could be explained by a massive black hole with up to 10 M☉, or a large number of smaller black holes with masses below 10 M☉. Dynamical evidence for a massive dark object was found at the core of the active elliptical galaxy Messier 87 in 1978, initially estimated at 5×10 M☉. Discovery of similar behavior in other galaxies soon followed, including the Andromeda Galaxy in 1984 and the Sombrero Galaxy in 1988.
Donald Lynden-Bell and Martin Rees hypothesized in 1971 that the center of the Milky Way galaxy would contain a massive black hole. Sagittarius A* was discovered and named on February 13 and 15, 1974, by astronomers Bruce Balick and Robert Brown using the Green Bank Interferometer of the National Radio Astronomy Observatory. They discovered a radio source that emits synchrotron radiation; it was found to be dense and immobile because of its gravitation. This was, therefore, the first indication that a supermassive black hole exists in the center of the Milky Way.
The Hubble Space Telescope, launched in 1990, provided the resolution needed to perform more refined observations of galactic nuclei. In 1994 the Faint Object Spectrograph on the Hubble was used to observe Messier 87, finding that ionized gas was orbiting the central part of the nucleus at a velocity of ±500 km/s. The data indicated a concentrated mass of (2.4±0.7)×10 M☉ lay within a 0.25″ span, providing strong evidence of a supermassive black hole.
Using the Very Long Baseline Array to observe Messier 106, Miyoshi et al. (1995) were able to demonstrate that the emission from an H2O maser in this galaxy came from a gaseous disk in the nucleus that orbited a concentrated mass of 3.6×10 M☉, which was constrained to a radius of 0.13 parsecs. Their ground-breaking research noted that a swarm of solar mass black holes within a radius this small would not survive for long without undergoing collisions, making a supermassive black hole the sole viable candidate. Accompanying this observation which provided the first confirmation of supermassive black holes was the discovery of the highly broadened, ionised iron Kα emission line (6.4 keV) from the galaxy MCG-6-30-15. The broadening was due to the gravitational redshift of the light as it escaped from just 3 to 10 Schwarzschild radii from the black hole.
On April 10, 2019, the Event Horizon Telescope collaboration released the first horizon-scale image of a black hole, in the center of the galaxy Messier 87. In March 2020, astronomers suggested that additional subrings should form the photon ring, proposing a way of better detecting these signatures in the first black hole image.
Formation
The origin of supermassive black holes remains an active field of research. Astrophysicists agree that black holes can grow by accretion of matter and by merging with other black holes. There are several hypotheses for the formation mechanisms and initial masses of the progenitors, or "seeds", of supermassive black holes. Independently of the specific formation channel for the black hole seed, given sufficient mass nearby, it could accrete to become an intermediate-mass black hole and possibly a SMBH if the accretion rate persists.
Distant and early supermassive black holes, such as J0313–1806, and ULAS J1342+0928, are hard to explain so soon after the Big Bang. Some postulate they might come from direct collapse of dark matter with self-interaction. A small minority of sources argue that they may be evidence that the Universe is the result of a Big Bounce, instead of a Big Bang, with these supermassive black holes being formed before the Big Bounce.
First stars
This section needs to be updated.(November 2022) |
The early progenitor seeds may be black holes of tens or perhaps hundreds of M☉ that are left behind by the explosions of massive stars and grow by accretion of matter. Another model involves a dense stellar cluster undergoing core collapse as the negative heat capacity of the system drives the velocity dispersion in the core to relativistic speeds.
Before the first stars, large gas clouds could collapse into a "quasi-star", which would in turn collapse into a black hole of around 20 M☉. These stars may have also been formed by dark matter halos drawing in enormous amounts of gas by gravity, which would then produce supermassive stars with tens of thousands of M☉. The "quasi-star" becomes unstable to radial perturbations because of electron-positron pair production in its core and could collapse directly into a black hole without a supernova explosion (which would eject most of its mass, preventing the black hole from growing as fast).
A more recent theory proposes that SMBH seeds were formed in the very early universe each from the collapse of a supermassive star with mass of around 100,000 M☉.
Direct-collapse and primordial black holes
Large, high-redshift clouds of metal-free gas, when irradiated by a sufficiently intense flux of Lyman–Werner photons, can avoid cooling and fragmenting, thus collapsing as a single object due to self-gravitation. The core of the collapsing object reaches extremely large values of matter density, of the order of about 10 g/cm, and triggers a general relativistic instability. Thus, the object collapses directly into a black hole, without passing from the intermediate phase of a star, or of a quasi-star. These objects have a typical mass of about 100,000 M☉ and are named direct collapse black holes.
A 2022 computer simulation showed that the first supermassive black holes can arise in rare turbulent clumps of gas, called primordial halos, that were fed by unusually strong streams of cold gas. The key simulation result was that cold flows suppressed star formation in the turbulent halo until the halo's gravity was finally able to overcome the turbulence and formed two direct-collapse black holes of 31,000 M☉ and 40,000 M☉. The birth of the first SMBHs can therefore be a result of standard cosmological structure formation — contrary to what had been thought for almost two decades.
Primordial black holes (PBHs) could have been produced directly from external pressure in the first moments after the Big Bang. These black holes would then have more time than any of the above models to accrete, allowing them sufficient time to reach supermassive sizes. Formation of black holes from the deaths of the first stars has been extensively studied and corroborated by observations. The other models for black hole formation listed above are theoretical.
The formation of a supermassive black hole requires a relatively small volume of highly dense matter having small angular momentum. Normally, the process of accretion involves transporting a large initial endowment of angular momentum outwards, and this appears to be the limiting factor in black hole growth. This is a major component of the theory of accretion disks. Gas accretion is both the most efficient and the most conspicuous way in which black holes grow. The majority of the mass growth of supermassive black holes is thought to occur through episodes of rapid gas accretion, which are observable as active galactic nuclei or quasars.
Observations reveal that quasars were much more frequent when the Universe was younger, indicating that supermassive black holes formed and grew early. A major constraining factor for theories of supermassive black hole formation is the observation of distant luminous quasars, which indicate that supermassive black holes of billions of M☉ had already formed when the Universe was less than one billion years old. This suggests that supermassive black holes arose very early in the Universe, inside the first massive galaxies.
Maximum mass limit
There is a natural upper limit to how large supermassive black holes can grow. Supermassive black holes in any quasar or active galactic nucleus (AGN) appear to have a theoretical upper limit of physically around 50 billion M☉ for typical parameters, as anything above this slows growth down to a crawl (the slowdown tends to start around 10 billion M☉) and causes the unstable accretion disk surrounding the black hole to coalesce into stars that orbit it. A study concluded that the radius of the innermost stable circular orbit (ISCO) for SMBH masses above this limit exceeds the self-gravity radius, making disc formation no longer possible.
A larger upper limit of around 270 billion M☉ was represented as the absolute maximum mass limit for an accreting SMBH in extreme cases, for example its maximal prograde spin with a dimensionless spin parameter of a = 1, although the maximum limit for a black hole's spin parameter is very slightly lower at a = 0.9982. At masses just below the limit, the disc luminosity of a field galaxy is likely to be below the Eddington limit and not strong enough to trigger the feedback underlying the M–sigma relation, so SMBHs close to the limit can evolve above this.
It was noted that, black holes close to this limit are likely to be rather even rarer, as it would require the accretion disc to be almost permanently prograde because the black hole grows and the spin-down effect of retrograde accretion is larger than the spin-up by prograde accretion, due to its ISCO and therefore its lever arm. This would require the hole spin to be permanently correlated with a fixed direction of the potential controlling gas flow, within the black hole's host galaxy, and thus would tend to produce a spin axis and hence AGN jet direction, which is similarly aligned with the galaxy. Current observations do not support this correlation.
The so-called 'chaotic accretion' presumably has to involve multiple small-scale events, essentially random in time and orientation if it is not controlled by a large-scale potential in this way. This would lead the accretion statistically to spin-down, due to retrograde events having larger lever arms than prograde, and occurring almost as often. There is also other interactions with large SMBHs that trend to reduce their spin, including particularly mergers with other black holes, which can statistically decrease the spin. All of these considerations suggested that SMBHs usually cross the critical theoretical mass limit at modest values of their spin parameters, so that 5×10 M☉ in all but rare cases.
Although modern UMBHs within quasars and galactic nuclei cannot grow beyond around (5–27)×10 M☉ through the accretion disk and as well given the current age of the universe, some of these monster black holes in the universe are predicted to still continue to grow up to stupendously large masses of perhaps 10 M☉ during the collapse of superclusters of galaxies in the extremely far future of the universe.
Activity and galactic evolution
Gravitation from supermassive black holes in the center of many galaxies is thought to power active objects such as Seyfert galaxies and quasars, and the relationship between the mass of the central black hole and the mass of the host galaxy depends upon the galaxy type. An empirical correlation between the size of supermassive black holes and the stellar velocity dispersion of a galaxy bulge is called the M–sigma relation.
An AGN is now considered to be a galactic core hosting a massive black hole that is accreting matter and displays a sufficiently strong luminosity. The nuclear region of the Milky Way, for example, lacks sufficient luminosity to satisfy this condition. The unified model of AGN is the concept that the large range of observed properties of the AGN taxonomy can be explained using just a small number of physical parameters. For the initial model, these values consisted of the angle of the accretion disk's torus to the line of sight and the luminosity of the source. AGN can be divided into two main groups: a radiative mode AGN in which most of the output is in the form of electromagnetic radiation through an optically thick accretion disk, and a jet mode in which relativistic jets emerge perpendicular to the disk.
Mergers and recoiled SMBHs
The interaction of a pair of SMBH-hosting galaxies can lead to merger events. Dynamical friction on the hosted SMBH objects causes them to sink toward the center of the merged mass, eventually forming a pair with a separation of under a kiloparsec. The interaction of this pair with surrounding stars and gas will then gradually bring the SMBH together as a gravitationally bound binary system with a separation of ten parsecs or less. Once the pair draw as close as 0.001 parsecs, gravitational radiation will cause them to merge. By the time this happens, the resulting galaxy will have long since relaxed from the merger event, with the initial starburst activity and AGN having faded away.
The gravitational waves from this coalescence can give the resulting SMBH a velocity boost of up to several thousand km/s, propelling it away from the galactic center and possibly even ejecting it from the galaxy. This phenomenon is called a gravitational recoil. The other possible way to eject a black hole is the classical slingshot scenario, also called slingshot recoil. In this scenario first a long-lived binary black hole forms through a merger of two galaxies. A third SMBH is introduced in a second merger and sinks into the center of the galaxy. Due to the three-body interaction one of the SMBHs, usually the lightest, is ejected. Due to conservation of linear momentum the other two SMBHs are propelled in the opposite direction as a binary. All SMBHs can be ejected in this scenario. An ejected black hole is called a runaway black hole.
There are different ways to detect recoiling black holes. Often a displacement of a quasar/AGN from the center of a galaxy or a spectroscopic binary nature of a quasar/AGN is seen as evidence for a recoiled black hole.
Candidate recoiling black holes include NGC 3718, SDSS1133, 3C 186, E1821+643 and SDSSJ0927+2943. Candidate runaway black holes are HE0450–2958, CID-42 and objects around RCP 28. Runaway supermassive black holes may trigger star formation in their wakes. A linear feature near the dwarf galaxy RCP 28 was interpreted as the star-forming wake of a candidate runaway black hole.
Hawking radiation
Hawking radiation is black-body radiation that is predicted to be released by black holes, due to quantum effects near the event horizon. This radiation reduces the mass and energy of black holes, causing them to shrink and ultimately vanish. If black holes evaporate via Hawking radiation, a non-rotating and uncharged stupendously large black hole with a mass of 1×10 M☉ will evaporate in around 2.1×10 years. Black holes formed during the predicted collapse of superclusters of galaxies in the far future with 1×10 M☉ would evaporate over a timescale of up to 2.1×10 years.
Evidence
Doppler measurements
Some of the best evidence for the presence of black holes is provided by the Doppler effect whereby light from nearby orbiting matter is red-shifted when receding and blue-shifted when advancing. For matter very close to a black hole the orbital speed must be comparable with the speed of light, so receding matter will appear very faint compared with advancing matter, which means that systems with intrinsically symmetric discs and rings will acquire a highly asymmetric visual appearance. This effect has been allowed for in modern computer-generated images such as the example presented here, based on a plausible model for the supermassive black hole in Sgr A* at the center of the Milky Way. However, the resolution provided by presently available telescope technology is still insufficient to confirm such predictions directly.
What already has been observed directly in many systems are the lower non-relativistic velocities of matter orbiting further out from what are presumed to be black holes. Direct Doppler measures of water masers surrounding the nuclei of nearby galaxies have revealed a very fast Keplerian motion, only possible with a high concentration of matter in the center. Currently, the only known objects that can pack enough matter in such a small space are black holes, or things that will evolve into black holes within astrophysically short timescales. For active galaxies farther away, the width of broad spectral lines can be used to probe the gas orbiting near the event horizon. The technique of reverberation mapping uses variability of these lines to measure the mass and perhaps the spin of the black hole that powers active galaxies.
In the Milky Way
Evidence indicates that the Milky Way galaxy has a supermassive black hole at its center, 26,000 light-years from the Solar System, in a region called Sagittarius A* because:
- The star S2 follows an elliptical orbit with a period of 15.2 years and a pericenter (closest distance) of 17 light-hours (1.8×10 m or 120 AU) from the center of the central object.
- From the motion of star S2, the object's mass can be estimated as 4.0 million M☉, or about 7.96×10 kg.
- The radius of the central object must be less than 17 light-hours, because otherwise S2 would collide with it. Observations of the star S14 indicate that the radius is no more than 6.25 light-hours, about the diameter of Uranus' orbit.
- No known astronomical object other than a black hole can contain 4.0 million M☉ in this volume of space.
Infrared observations of bright flare activity near Sagittarius A* show orbital motion of plasma with a period of 45±15 min at a separation of six to ten times the gravitational radius of the candidate SMBH. This emission is consistent with a circularized orbit of a polarized "hot spot" on an accretion disk in a strong magnetic field. The radiating matter is orbiting at 30% of the speed of light just outside the innermost stable circular orbit.
On January 5, 2015, NASA reported observing an X-ray flare 400 times brighter than usual, a record-breaker, from Sagittarius A*. The unusual event may have been caused by the breaking apart of an asteroid falling into the black hole or by the entanglement of magnetic field lines within gas flowing into Sagittarius A*, according to astronomers.