Tafraout Group
The after-effects of the Toarcian Oceanic Anoxic Event are also very present in the marginal marine strata of the Tafraout Group, with the Toksine Section recording a dramatic collapse on the scale of the Tethys of the neritic carbonate system.
Geology
The Central High Atlas of Morocco is part of a mountain belt formed by the inversion of a rift from the Triassic-Jurassic periods, due to Cenozoic tectonic activity. The region's structure comes from four main tectonic phases: the pre-rift phase tied to the formation of Pangaea, the syn-rift phase during the Late Permian to Late Triassic, influenced by the opening of the Atlantic Ocean and Tethys Ocean, and the post-rift phase, where Jurassic-Cretaceous carbonate platforms formed. The High Atlas has thrust and oblique-slip faults from W-E to NE-SW. It is an intracontinental mountain range resulting from the uplift of a large Mesozoic rift system. Triassic to Cretaceous layers are confined within basins, controlled by extensional rift structures. Sedimentation in these basins varied, with marine shales and limestones in the east and fluvial deposits in the west. Several tectonic events during the Triassic-Jurassic boundary reactivated normal faults, leading to the dominance of marls during the Middle Liassic to Toarcian.
Description
"Aguerd-nˈTazoult Formation"
This informal unit represents on reality the youngest continental-coastal layers of the Azilal Fm, and marginal to open marine ones of the Tafraout Fm. It represent the most recent marginal marine layers in the Amezraï minibasin, dating from the Upper Toarcian-Aalenian periods and mark the E expansion of the Azilal Formation. It begins with layers that have many conglomerate lenses and ends with coral patch reefs. Sandstones, oolitic, and biodetritic limestones are also found throughout. Red and green marls appear in several layers. In the Talmest-Tazoult area, is made of yellow limestones and marls, hybrid sandstones, micritic limestones, having reef ledges in the upper part and red sandstones and marls in the lower part. Here the formation is part of a large +200 m thick yellowish limestone bar, with the transgressive "S10", whose end marks the major post Middle Toarcian transgressive event, composed of bioclaetic or oncolithic limestones, poorly developed low-marine-level prisms & marly limestones with oblique stratifications, while oolitic limestones mark smaller transgressive events, and then the major one towards the Bajocian with the Aït Abdi/Bin el Ouidane Formation, flooding again all the sector.
"Amezraï Formation"
Another Informal unit found in the Amezraï minibasin and linked to the Tazoult Ridge, dates to the Earliest Toarcian and is identified by brachiopod fossils. It includes sandstones, marls, and biodetrital or oolitic limestones, with layers varying from centimeters to up to 6 meters thick. The lower part consists of conglomerates, sandstones, and clays, transitioning to limestones and marls at the top. Ripple structures and cross-bedding are common in sandstone layers, while reworked horizons appear in the limestone. The formation reflects a subtidal to supratidal environment, with some layers suggesting lagoonal conditions and reduced carbonate content compared to older formations. Local tectonic activity, mainly due to seismic events in the Tethyan region, influenced the formation, causing erosion of older Paleozoic layers.
Azilal Formation
Informally know as "Marnes chocolat" in the Azilal region, and represents a continental to marginal marine unit made up of red-brown marls, silts (microsandstones) and conglomerates with centimetric quartz dragees. More marine-influenced sections near Beni Mellal are composed by a succession of reddish-brown tints with terrigenous dominance: sandstone, clays with paleosols and sandstone limestones sometimes dolomitized, with marmorized levels in paleosols towards the N. Here, it evolves from lower sections with transition from sandstone to limestone and/or sandstone to clay, with a thin level of green marls locally rich in ostracods. Then is followed by subtidal term, represented by an oolitic limestone with fine lamellibranch bioclasts and variable percentages of quartz and sandstone with calcareous cement and rare oolites drawing on the surface mega-ripples of 3 to 5 m in wavelength. It ends with supratidal deposits made of coarse sandstone gradually changing to red Marls with "fluer" structures and locally to paleosols with fluvial decametric channeling lenses.
On the south-southwest edge of the basin towards west of Azilal (Jbel Til-Jbel Amersiaz basin and part of the M'Goun syncline), Guettioua, Demnate, Telouet, Toundoute & Marrakesh, under the Bajocian limestones or directly under the Bajocian?-Bathonian Guettioua Formation, develops a thick a red detrital section in which pelites, sandstones and conglomerates with centimeter-sized quartz balls alternate and breccias (locally called " Wazzant Formation") with non dissolved Liassic limestone elements. This sector reaches 800 m thickess in the Wazzant subasin, being very reduced to the south of it in Aït-Toutline or Aït-Iouaridène, recovering a variation of the sedimentary process formed by a complex sedimentary unit, terrigenously dominated, composed by the abundance of conglomeratic channels with quartz dragees and Paleozoic basement elements, sandstones organized in bars channeled lenticulars and red clays, the whole part of the facies is organized in metric sequences of filling and alluvial channels.
In the Dadés area the formation is present asynchronously, seen in the W in the Earliest Toarcian, yet in some areas like Boumardoul n’Imazighn doesn´t reach until the Middle Toarcian onwards, here recovered under the "Tidrite section", made of fine terrigenous deposits interbedded with dolomitized limestone. In the In the Ait Hani area at Tinejdad, the "Aït Hani formation" represents the upper part of the Azilal formation, dominated by shallow marine to intertidal carbonates with coral patch reefs and intercalated or subordinated terrigenous sediments.
Tafraout Formation
The Tafraout Formation consists of oolitic and biodetrital limestones with cross-stratifications, found in channels and bars, alongside greenish marls and micro-conglomerates. These layers were deposited on a coastal platform. The formation is mainly made of sandstones, marls, and ooid limestones, different from older layers. Common fossils include bivalves, brachiopods, gastropods, corals, and echinoderms, with plant remains in some sandstones. The rocks formed in environments ranging from supratidal to subtidal, characterized by tropical conditions akin to those observed on Andros, Bahamas. The upper part of the formation shows sediments filling an old Pliensbachian basin, moving from deeper marine conditions to a supratidal coastal plain. Fossils and sediment features suggest a challenging environment, with alternating sandstone and marl layers indicating changes in water depth and sedimentation patterns.
Tagoudite Formation
The Tagoudite Formation marks a major shift in Liassic sedimentation, replacing the carbonate turbidites of the Ouchbis Formation with mostly siliciclastic layers. These layers alternate between gray and green sandstone, sandy marls, and siltstones, forming sequences up to 20 meters thick. They show a decrease in grain size and an increase in marl content from bottom to top, with features like ripple marks and laminations. Microscopically, the turbidites are mainly fine silt, with varying amounts of quartz, feldspar, and carbonate detritus, and occasional pyrite. This formation suggests an open marine environment with sediment interruptions and materials coming from distant areas. It is widespread in the Central High Atlas, with thicknesses reaching up to 320 meters, and varies across different regions like Tounfite and Beni Mellal. In the Central Middle Atlas, sedimentation was interrupted by emersion before the formation's deposition.
Hydrogeology
The Azilal Formation constitutes a depressed zone, often intensely cultivated, rich in springs and wells. This is explained by the alternation of permeable and impermeable levels. Springs spring up at the top of this unit, under limestones (Tanant or Bin-el-Ouidane Formations), as in Bernat. The numerous wells dug on the northern edge of Guettioua testify to this unit aquifer qualities, with water accumulated in the sandstone-conglomeratic levels interstratified in the pelites.
Paleogeography
Early Jurassic Paleogeography of the Sahara Craton, including source Highlands, Jurassic basins and CAMP outcrops and Paleogeography of N Gondwana & the European ArquipelagoThe Tafraout Group was formed on the Moroccan Carbonate Platform during a sea-level rise in the Early Toarcian, linked to the Toarcian Oceanic Anoxic Event, at a palaeolatitude between 19°-20°N, around the same latitude as modern Mauritania or Cuba, situated between ancient geological regions like the West Moroccan Arch, the Anti-Atlas and the Sahara craton, developed after a major sea regression, with red clays and conglomerates filling small basins in the Atlas region.
Two main stages mark the area's evolution: during the Lower Toarcian, deposition patterns from the earlier Pliensbachian continued, followed by terrigenous materials filling the basins and stopping temporally the carbonate production. It evolved along several depocenters and associated accidents, the southern edge of the Tilougguit Syncline in the north to the axis of the Aït Bouguemmez Basin in the south, showed that the depocenter zone corresponded to the disposal area located between the Talmest-Tazolt Ridge to the North and the North-Atlasic accident to the South. This terrestrial lithology is mostly found in the small basins in tearing in the Atlas of Telouet, Toundoute, Afourer and Azilal, having the Demnat Accident as the major structural element in this last sector. While at this W areas it became fully terrestrial/intertidal, at other areas like Beni Mellal, Dadès Gorges or Zaouiat Ahansal marine influences are seen in a carbonate-siliclastic regime. By the Middle Toarcian-Aalenian, the Azilal Formation expanded eastward, with isolated carbonates forming in the Amezraï basin, surrounded by terrigenous sediments. This period is marked by the individualization of thein the center of the basin and by a relative tectonic calm in the other coeval sectors.
Marine fossils like brachiopods and ammonites help date the sediment layers and confirm the transition from marine to expansive E terrestrial environments during the Middle Toarcian. The deposition starts with a marked break of the Carbonate production and a major regression in the Lowermost Toarcian, then oscilated Transgresive/Regresive cycles in the Laevisoni-Bifrons substages, followed finally by a post Bifrons major regression and full return to the Carbonate production. The Tafraout Platform deepened over time, signaling a shift to transgressive conditions even with the expansion of W continental facies. On the Amezraï Formation basin the fauna is composed by brachiopods such as Soaresirhynchia bouchardi, S. babtisrensis and Pseudogibbirhynchia jurensis that corroborate the Earliest Toarcian age for it and adjacent layers. Meanwhile, the presence of Aalenian (Bradfordernsis-Murchinsonae) Branchiopods in the "Aguerd-nˈTazoult Formation" coeval with Ammonites of the same age at the Ikerzi Area confirms the marine delimitation in the last stages of deposition. The "Tafraout Platform" saw then a deepening towards the uppermost layers, teasing the transition to the Bin El Ouidane transgressive Carbonate Platform facies, while the lower sequences, with fine conglomerate layers and plant remains indicate a proximal delivery area and the peak of the regression, with many microlagoons that formed between the large coral patch reefs are documented by micrite and partially leached micrite.
Paleoenvironment
The Tafraout Group covers most of the W High Atlas, surrounded by highlands that probably hosted dry cool (10.6 °C) to humid climate (12.30 °C), with a succession rain tundra to wet forest environments, as proven by samples from coeval layers in the External Rif Chain. The Continental/Tidal Flat Azilal Formation was deposited in coastal environments influenced by rivers, tidal flats, and paralic settings, rwith reworked material and in Toundoute unique interbedded Explosive eruption-type volcanic material, generally constituting more than half of the detrital components, showing clear carbonate recrystallization, suggesting that these fragments were still at high temperature during deposition and, therefore, contemporaneous with the sedimentation, probably as a result of early activity in the local South-Atlasic Fault. The environment shifted from coastal facies in the north to fluvial facies in the south, and tectonic activity affected sediment deposition. The flow of the fluvial-washed sediments take place in a E-NE direction, being moved to the layers of the Amezräi, Tagoudite & Tafraout Formations and other coeval marine units, as well are found on fluviatile channels inside the own rocks of this unit. The Azilal Fm also saw high plant activity, with remains such as wood, charcoal, and rhizoliths, indicating nearby vegetated soils. Sedimentary features include raindrop impacts and ripple marks indicating channel/floodplain type fluvial system, with sand-filled channels abundant in plant roots (mostly located in fine limestone, probably from the channel margins), along with evidence of ephemeral Palustrine (Sabkhas, Chotts) episodes in the form of carbonate bodies (Caliche or Calcrete levels), intercalated with conglomerate under an arid environment, as marks the development of gypsum, particularly in areas like Azilal, Toundoute and Telouet.
The "Tafraout Platform" was the major marine unit withing the area, developed during a major drowning episode linked to the Toarcian Anoxic event. Initially, a shift to siliciclastic deposits occurred, marked by storm events and increased plant debris, indicating a warm, humid climate, were local laguno-marine facies were overlain by terrigenous deposits of the Azilal & "Amezraï" Fm, filling small basins in the Atlas of Afourer and Azilal and leaving a major marine siliclastic environment (Tagoudite Fm). In Demnate and nearby areas, conditions became fully terrestrial, while to the east the sea regression occurred later. Latter in the Early Toarcian Beni Mellal, the Amezraï minbasin or the Dadés area evolved first as an carbonate environment within the Tafraout Formation, with diverse marine fauna, including coral reefs and "lithiotid" (Plicatostylidae aberrant reef-forming) bivalves. Then within the Toarcian Oceanic Anoxic Event carbonate production stopped, causing local extinctions. A major regression happened in the Middle Toarcian-Aalenian, marked by tectonic calm and sedimentation of terrigenous and carbonate layers of the Upper Tafraout Fm, reactivating the carbonate factory and the recovery of coral reefs (this time without "lithiotids").
The Toarcian Oceanic Anoxic Event (T-OAE) intensified Tropical storms, destroying older carbonate platforms and increasing siliciclastic deposits, which contributed to the formation of the Tafrout environment. Additionally, after the T-OAE, ecosystems in areas like Jebel Toksine began to recover with new carbonate activity and diverse marine life, including bivalves and other reef organisms.
The aftermath of the T-OAE is visible in the lower Azilal Formation, showing a slow recovery of marine environments. There is also evidence of a Middle Toarcian cold snap, followed by a return to warmer conditions. The eastern and northeastern High Atlas saw the development of carbonate sedimentation, with reefs and marine fossils indicating tectonic activity during the Late Toarcian.
The central High Atlas region features long diapir and minibasins formed during early Jurassic rifting, with the Tazoult Ridge being a key example. Diapir movement shaped the surrounding rock layers, while local sedimentation reflects changes in climate, including wetter periods linked to increased erosion. Sharp geological boundaries mark the closure of salt walls during diapir growth, and ancient environments here resembled modern shallow waters like the Red Sea. Charcoal remnants suggest coastal forests or mangroves existed during wetter times.
The formation also shows evidence of erosion from nearby highlands,as indicates abundant pebbles of metamorphic and igneous rocks, implying that the material must have been derived from the Paleozoic or Proterozoic from a hinterland frequently emerged and subject to erosion and the effects of diagenesis, locally either to the south in the Anti-Atlas, to the west in the Massif Ancien and Jebilet, and to the north in the Central Meseta, all places that were subaerially exposed during the Jurassic. Specifically, the Anti-Atlas shows processes of tectonic uplift, overburden erosion, which, combined with the concentration of coarse siliciclastic material in the western part of the central High Atlas (absent in the east), suggest that this area was the source of the altered Lower Toarcian sediments, allowing the tracing of the fluvial channels that developed towards the Azilal Formation.
Biota
Color key
|
Notes Uncertain or tentative taxa are in small text; |
Foraminifera
Genus | Species | Location | Formation & Age | Material | Habitat | Notes | Images |
---|---|---|---|---|---|---|---|
Ammobaculites |
|
|
|
Isolated Tests/Shells | Shallow Marine/Lagoonal | A foraminifer of the family Ammomarginulininae. | |
Dentalina |
|
|
|
Isolated Tests/Shells | Shallow Marine/Lagoonal | A foraminifer of the family Nodosariinae. | |
Everticyclammina |
|
|
|
Isolated Tests/Shells | Shallow Marine/Lagoonal | A foraminifer of the Everticyclamminidae family. It represents a species related to E. virguliana, known from the Middle Jurassic of Morocco | |
Citharina |
|
|
|
Isolated Tests/Shells | Shallow Marine/Lagoonal | A foraminifer of the family Vaginulininae. | |
Glomospira |
|
|
|
Isolated Tests/Shells | Shoreface to Open Marine | A foraminifer of the family Ammodiscidae. | |
Glomospirella |
|
|
|
Isolated Tests/Shells | Shoreface Marine | A foraminifer of the family Ammovertellininae. | |
Haurania |
|
|
|
Isolated Tests/Shells | Shoreface Marine | A foraminifer of the family Hauraniinae. | |
Ichtyolaria |
|
|
|
Isolated Tests/Shells | Shallow Marine/Lagoonal | A foraminifer of the family Ichthyolariinae. | |
Lenticulina |
|
|
|
Isolated Tests/Shells | Shallow Marine/Lagoonal | A foraminifer of the family Lenticulininae. | |
Lingulina |
|
|
|
Isolated Tests/Shells | Shallow Marine/Lagoonal | A foraminifer of the family Lenticulininae. | |
Marginulina |
|
|
|
Isolated Tests/Shells | Shallow Marine/Lagoonal | A foraminifer of the family Marginulininae. | |
Nodosaria |
|
|
|
Isolated Tests/Shells | Shoreface to Open Marine | A foraminifer of the family Nodosariinae. | |
Ophtalmidium |
|
|
|
Isolated Tests/Shells | Shoreface to Open Marine | A foraminifer of the family Ophthalmidiidae. | |
Orbitopsella |
|
|
|
Isolated Tests/Shells | Shallow Marine/Lagoonal | A foraminifer of the family Orbitopsellinae. | |
Pseudocyclammina |
|
|
|
Isolated Tests/Shells | Shallow Marine/Lagoonal | A foraminifer of the family Hauraniidae. | |
Placopsilina |
|
|
|
Isolated Tests/Shells | Open Marine | A foraminifer of the family Placopsilinidae. | |
Pseudonodosaria |
|
|
|
Isolated Tests/Shells | Shallow Marine/Lagoonal | A foraminifer of the family Nodosariinae. | |
Reinholdella |
|
|
|
Isolated Tests/Shells | Shallow Marine/Lagoonal | A foraminifer of the family Ceratobuliminidae. | |
Siphovalvulina |
|
|
|
Isolated Tests/Shells | Shoreface to Open Marine | A foraminifer of the family Pseudopfenderininae. | |
Spirillina |
|
|
|
Isolated Tests/Shells | Shoreface to Open Marine | A foraminifer of the family Spirillinidae | |
Verneuilinoides |
|
|
|
Isolated Tests/Shells | Open Marine | A foraminifer of the family Verneuilinoidinae |
Phytoplankton
Genus | Species | Location | Formation & Age | Material | Notes | Images |
---|---|---|---|---|---|---|
Carinolithus |
|
|
|
Coccoliths | A Coccolithophorid of the family Calyculaceae inside Haptophyta. | |
Luehndea |
|
|
|
Cysts | A Dinoflagellate cyst of the family Luehndeoideae. Constitutes an excellent marker of the Pliensbachian-Toarcian interval. | |
Mancodinium |
|
|
|
Cysts | A Dinoflagellate cyst of the family Mancodiniaceae. | |
Mendicodinium |
|
|
|
Cysts | A Dinoflagellate cyst of the family Dinophyceae. | |
Ortonella |
|
|
|
Calcified Imprints | A Cyanobacterial Alga of the family Rivulariaceae or Scytonemataceae. Considered to be analogue with extant Rivularia. |
Invertebrates
In the Dadés area and in the Tafraout type locality large Coral patch reefs rarely occur in the middle of the unit with associated echinodems (Sea urchin spines, Crinoid fragments) lamellibranchs, gastropods, bryozoans, serpulids annelids, branchiopods, solitary corals and algae. Gastropods have been discovered in several places, but none of the specimens have been studied nor identified. Beds with large accumulations of unidentified Ostracod valves on an endemic thin level of green marl are found at the Beni-Mellal area (Adoumaz & Col de Ghnim outcrops). The tubes of serpulid worms are known from Jbel Toksine, in relation to the bivalve pavements.
Ichnofossils
Genus | Species | Location | Formation & Age | Material | Made by | Images |
---|---|---|---|---|---|---|
Arenicolites |
|
|
|
Traces of habitation |
|
|
Chondrites |
|
|
|
Tubular Fodinichnia |
|
|
Rhizocorallium |
|
|
|
Tubular Fodinichnia |
|
. |
Scolicia |
|
|
|
Locomotion or feeding trace |
|
|
Skolithos |
|
|
|
Cylindrical to subcylindrical burrows |
|
. |
Thalassinoides |
|
|
|
Tubular Fodinichnia |
|
. |
Zoophycos |
|
|
|
Traces of habitation |
|
Anthozoa
The platform patch reefs in the Tafraout area are notable for their biodiversity, with some reaching heights of up to 40 m and lengths of up to 80 m, representing massive biostromes with a varied associated fossil assemblage, including bivalves, gastropods, echinoderm fragments, solitary corals, and bryozoans, found among the coral patchs. Massive reef pinnacles are recovered at Anergui and northern flank of Tassent, while rarer ones are know from Bou Zemou.
Genus | Species | Location | Formation & Age | Material | Notes | Images |
---|---|---|---|---|---|---|
Actinaraea? |
|
|
|
Calcified Skeletal Pieces | A coral of the family Actinacididae. | |
Ampakabastraea |
|
|
|
Calcified Skeletal Pieces | A coral of the family Stylinidae. | |
Archaeosmilia |
|
|
|
Calcified Skeletal Pieces | A coral of the family Zardinophyllidae. These solitary corals were observed throughout the lower unit biostromes. | |
Archaeosmiliopsis |
|
|
|
Calcified Skeletal Pieces | A coral of the family Archaeosmiliidae. | |
Enallhelia? |
|
|
|
Calcified Skeletal Pieces | A coral of the family Stylinidae. | |
Haimeicyclus |
|
|
|
Calcified Skeletal Pieces | A coral of the family Oppelismiliidae. | |
Hispaniastraea |
|
|
|
Calcified Skeletal Pieces | A coral of the family Hispaniastraeidae. | |
Lophelia? |
|
|
|
Calcified Skeletal Pieces | A coral of the family Carophylliidae. | |
Myriophyllum |
|
|
|
Calcified Skeletal Pieces | A coral of the family Oppelismiliidae. | |
Phacelostylophyllum |
|
|
|
Calcified Skeletal Pieces | A coral of the family Stylophyllidae. | |
Phacelophyllia |
|
|
|
Calcified Skeletal Pieces | A coral of the family Dermosmiliidae. | |
Periseris |
|
|
|
Calcified Skeletal Pieces | A coral of the family Latomeandridae. | |
Spongiocoenia |
|
|
|
Calcified Skeletal Pieces | A coral of the family Stylophyllidae. | |
Stylosmilia |
|
|
|
Calcified Skeletal Pieces | A coral of the family Stylinidae. | |
Thecactinastraea |
|
|
|
Calcified Skeletal Pieces | A coral of the family Oppelismiliidae. | |
Thecosmilia |
|
|
|
Calcified Skeletal Pieces | A coral of the family Thecosmiliidae |
Brachiopoda
Genre | Species | Location | Formation & Age | Material | Notes | Images |
---|---|---|---|---|---|---|
Curtirhynchia |
|
|
|
Isolated shells | A brackish/marine Tetrarhynchiidae Brachiopod | |
Gibbirhynchia |
|
|
|
Isolated shells | A brackish/marine Tetrarhynchiidae (Brachiopod) | |
Globirhynchia |
|
|
|
Isolated shells | A brackish/marine Rhynchonellidae Brachiopod | |
Quadratirhynchia |
|
|
|
Isolated shells | A brackish/marine Tetrarhynchiidae (Brachiopod) | |
Homoeorhynchia |
|
|
|
Isolated shells | A brackish/marine Rhynchonellinae (Brachiopod). Homoeorhynchia meridionalis indicates the Toarcian Serpentinus zone and base of the Bifrons zone | |
Liospiriferina |
|
|
|
Isolated shells | A brackish/marine Spiriferinidae (Brachiopod) | |
Pseudogibbirhynchia |
|
|
|
Isolated shells | A brackish/marine Pamirorhynchiinae (Brachiopod). | |
Soaresirhynchia |
|
|
|
Isolated shells | A brackish/marine Basiliolinae (Brachiopod) | |
Sphaeroidothyris |
|
|
|
Isolated shells | A brackish/marine Lobothyrididae (Brachiopod) | |
Stroudithyris |
|
|
|
Isolated shells | A Brackish/marine Lissajousithyrididae (Brachiopod). Mostly benthonic specimens are known. The presence of this species indicates an upper Toarcian-Aalenian age for the layers where was discovered. | |
Telothyris |
|
|
|
Isolated shells | A brackish/marine Lobothyrididae (Brachiopod). Relatively abundant on seashore deposits. Includes juvenile forms of Telothyris jauberti, present on benthic deposit strata. |
Bivalves
Genre | Species | Location | Formation & Age | Material | Notes | Images |
---|---|---|---|---|---|---|
Alectryonia |
|
|
|
Isolated Shells | A marine member of the family Ostreidae | |
Chlamys |
|
|
|
Isolated Shells | A marine member of the family Pectinidae | |
Cochlearites |
|
|
|
Isolated shells | A brackish/marine member of Plicatostylidae. A large bivalve, with a subequivalent shell, reaching 60–70 cm high. It is one of the three main bivalves found on the Lithiotis Facies, whose accumulations generally cover megalodontid coquinas. | |
Gervillioperna |
|
|
|
Isolated shells | A brackish/marine member of Plicatostylidae. Abundant along rootlets, indicating a very shallow and restricted lagoon or marsh environment | |
Gryphaea |
|
|
|
Isolated Shells | A saltwater/brackish bivalve of the family Gryphaeidae | |
Harpax |
|
|
|
Isolated Shells | A marine member of the family Plicatulidae | |
Lithioperna |
|
|
|
Isolated shells | A brackish/marine member of Plicatostylidae. This genus was founded to be a bivalve with a byssate juvenile stage that developed different lifestyles as adults depending on the density of the individuals and the firmness of the bottom | |
Neithea |
|
|
|
Isolated Shells | A marine member of Neitheidae | |
Pachygervillia |
|
|
|
Isolated shells | A brackish/marine member of Plicatostylidae. | |
Pachyrisma |
|
|
|
Isolated Shells | A saltwater bivalve of the family Pachyrismatidae | |
Opisoma |
|
|
|
Isolated shells | A brackish/marine member of Astartidae. Is considered a genus that evolved from shallow-burrowing ancestors, secondarily becoming an edge-prone semi-fauna adapted to photosymbiosis. | |
Trichites |
|
|
|
Isolated shells | A marine member of the family Pinnidae | |
Pholadomya |
|
|
|
Isolated shells | A marine member of the family Pholadomyidae | |
Plagiostoma |
|
|
|
Isolated Shells | A saltwater/brackish bivalve of the family Limidae | |
Spondylus |
|
|
|
Isolated Shells | A marine member of the family Spondylidae |
Gastropoda
Multiple Gasteropodan faunas are know, specially associated with coral patch reefs, but lack proper studies.
Genus | Species | Location | Formation & Age | Material | Notes | Images |
---|---|---|---|---|---|---|
Nerinea |
|
|
|
Isolated shells | A Nerineoidean, member of the family Nerineidae | |
Neritodomus |
|
|
|
Isolated Shells | A Cycloneritidan, member of the family Neridomidae | |
Platyacra |
|
|
|
Isolated Shells | A Trochoidean, member of the family Angariidae | |
Purpurina |
|
|
|
Isolated Shells | A Caenogastropodan, member of the family Purpurinidae | |
Scurriopsis |
|
|
|
Isolated shells | A Lottioidean, member of the family Acmaeidae |
Ammonites
Genus | Species | Location | Formation & Age | Material | Notes | Images |
---|---|---|---|---|---|---|
Alocolytoceras |
|
|
|
Isolated shells | An Ammonite of the family Lytoceratidae. | |
Calliphylloceras |
|
|
|
Isolated shells | An Ammonite of the family Calliphylloceratinae | |
Canavaria |
|
|
|
Isolated shells | An Ammonite of the family Hildoceratidae. | |
Dactylioceras |
|
|
|
Isolated shells | An Ammonite of the family Dactylioceratidae. The basis of this series is based on a regional discontinuity marked by a remarkable abundance of Eodactylites from the Lower Toarcian | |
Eleganticeras |
|
|
|
Isolated shells | An Ammonite of the family Hildoceratidae. | |
Harpoceras |
|
|
|
Isolated shells | An Ammonite of the family Hildoceratidae. | |
Hildaites |
|
|
|
Isolated shells | An Ammonite of the family Hildoceratidae. | |
Hildoceras |
|
|
|
Isolated shells | An Ammonite of the family Hildoceratidae. Characteristics of the base of the area in Bifrons | |
Lytoceras |
|
|
|
Isolated shells | An Ammonite of the family Lytoceratidae. | |
Murleyiceras |
|
|
|
Isolated shells | An Ammonite of the family Hildoceratidae. | |
Neolioceratoides |
|
|
|
Isolated shells | An Ammonite of the family Hildoceratidae. | |
Paltarpites |
|
|
|
Isolated shells | An Ammonite of the family Hildoceratidae. | |
Planammatoceras |
|
|
|
Isolated shells | An Ammonite of the family Hammatoceratidae. Indicator of a Middle Aalenian age | |
Praepolyplectus |
|
|
|
Isolated shells | An Ammonite of the family Hildoceratidae. |
Crustacea
Genus | Species | Location | Formation & Age | Material | Notes | Images |
---|---|---|---|---|---|---|
Bairdia |
|
|
|
Isolated Valves | A marine Ostracodan of the family Bairdiinae. | |
Bairdiacypris |
|
|
|
Isolated Valves | A marine Ostracodan of the family Bairdiinae. | |
Kinkelinella |
|
|
|
Isolated Valves | A marine Ostracodan of the family Protocytheridae. Local dominant Lower Toarcian taxon | |
Ogmoconcha |
|
|
|
Isolated Valves | A marine Ostracodan of the family Healdiidae. | |
Polycope |
|
|
|
Isolated Valves | A marine Ostracodan of the family Polycopidae. Present with large accumulations of specimens |
Echinodermata
Multiple echinoderm remains, including Crinoid articulated and fragmentary specimens and indeterminate echinoid fragments, are know from several localities, usually associated with large coral bioherms or sea trangressions.
Genus | Species | Location | Formation & Age | Material | Notes | Images |
---|---|---|---|---|---|---|
Apiocrinites |
|
|
|
Complete specimens;
Isolated parts of the exoskeleton |
A Crinoid of the family Apiocrinitidae | |
Arbacioida | Indeterminate |
|
|
Specimens | A marine Arbacioida (Echinoidean). These sea urchins are the most abundant echinoderms on local lithiolid reefs. | |
Cotylederma |
|
|
|
Complete specimens;
Isolated parts of the exoskeleton |
A Crinoid of the family Cotyledermatidae | |
Diplechinus |
|
|
|
Specimens and isolated spines | An Echinoid of the family Stomechinidae | |
Diplocidaris |
|
|
|
Specimens and isolated spines | An Echinoid of the family Diplocidaridae | |
Dubarechinus |
|
|
|
Specimens and isolated spines | An Echinoid of the family Orthopsidae | |
Firmacidaris |
|
|
|
Specimens and isolated spines | An Echinoid of the family Cidaridae | |
Hemicidaris |
|
|
|
Specimens and isolated spines | An Echinoid of the family Hemicidaridae | |
Pentacrinites |
|
|
|
Complete specimens;
Isolated parts of the exoskeleton |
A Crinoid of the family Pentacrinitidae | |
Polypedina |
|
|
|
Specimens and isolated spines | An Echinoid of the family Pedinidae |
Vertebrates
Several scales & teeth of fishes (Lepidotes?) are know from several locations, coming from freshwater/lagoonal layers. Indeterminate dinosaurian & other vertebrates are know from Mizaguène Hill, Taouja Ougourane, Aït Ouaridène, Oued Rzef & Jbel Remuai in the Azilal Province. Some of them are recovered in a "Bone bed" and others are associated with abundant plant remains.
Actinopteri
Genus | Species | Location | Formation & Age | Material | Notes | Images |
---|---|---|---|---|---|---|
Leptolepis |
|
|
|
|
Marine bony fish of the family Leptolepidae. Represents a genus of small cosmopolitan fish, common in the Toarcian Mediterranean area. |
|
Leptolepididae |
Indeterminate |
|
|
|
Marine bony fish of the family Leptolepidae. |
Theropoda
Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
Berberosaurus | B. liassicus |
|
|
An Averostran Theropod, originally referred Abelisauroidea, it can represent a basal Ceratosaur instead | |
Coelophysidae | Unnamed |
|
Two adults and one recently hatched juvenile: At least the posterior half of the skeleton is present: caudal, sacral, dorsal vertebrae, pelvis and both hind legs | A possible coelophysid coelophysoid. Mickey Mortimer Assigned it to Coelophysidae based on the "apparent fusion between distal tarsal III and metatarsal III". Was proposed as a possible tetanuran or a Coelurosaur, even compared with the Australian genus Kakuru, but latter was actively dismissed. | |
Giant Theropod | Unnamed |
|
Phalanges and several non mentioned remains | Described as a "large theropod of uncertain affinities", "enigmatic theropod" or as Theropod showing "a size larger than any of the know theropods of the Triassic-Early Jurassic know, indicating that Toarcian theropods had sizes rivaling that of late Jurassic allosaurs". |
Sauropodomorpha
Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
Gravisauria | Indeterminate |
|
Pubis and other indeterminate remains | A gravisaurian sauropod. Quoted to resemble Tazoudasaurus, if is not another specimen of the genus. | |
Eusauropoda | Unnamed |
|
5 dorsal & caudal vertebrae, fragmentary ribs, chevrons and several large badly determinable debris | A medim-sized eusauropodan sauropod. Was collected on a freshwater lagoonal depositional setting. | |
Sauropoda | Indeterminate |
|
Left ilium, a humerus and three vertebrae | A small-sized sauropod of uncertain affinities. | |
Sauropodomorpha | Indeterminate |
|
One or more vertebrae and other unidentified remains | A possible Sauropodomorpha of uncertain affinities. It was tought to be found in Cretaceous strata. | |
Tazoudasaurus | T. naimi |
|
Around 10 different specimens:Partially articulated skeleton and cranial material including complete left mandible with teeth, quadrate, jugal, postorbital, parietal, frontal and exoccipital. Associated remains of a juvenile skeleton. | A gravisaurian sauropod of the family Vulcanodontidae. One of the most complete sauropods from the Lower Jurassic, probably formed herds. |
Viridiplantae
The vegetation in the Toundoute area is compared to that of the Isle of Pines. Paleosols in these regions show many plant roots (Rhizoliths) and heavily disturbed layers. Plant remains include coal, leaves, woody roots, rhizoliths, fossil wood, and other plant debris. In Toundoute, small plant fragments, mostly fern leaflets and some cycad leaves, were found, with wood debris resembling conifers like Pinaceae or Taxaceae. Ferns seem to have dominated the vegetation, likely in wetlands, followed by cycads and conifers. Similar plants have been found in the coeval Egypt's Mashabba Formation.
At the top of the Azilal Formation at the Idemrane geosite, unidentified pieces of wood fossils of variable sizes were recovered (largest over 20 cm in length) showing traces of iron oxides. This woody pieces are considered root fragments. Plant remains are very abundant in places such as the north of Jbel Akenzoud and partly impregnated and/or carbonized by malachite. At Jebel Toksine, woody plant debris, including charcoal, suggests vegetation in a humid, marginal marine environment, maybe a reef-influenced mangrove. Jebel Azourki has layers of shales with coal streaks and plant fragments, possibly representing a marsh in a lagoon area. At M'Semrir Pass, samples dominated by Pollen have been recovered in the Tafraout & Azilal Fms.
Phytoclasts, spores, pollen and Tasmanites algae indicate that the palaeoenvironment of the lower Toarcian Amellago area was likely proximal continental shelf with a high terrestrial input, and notorious influence of brackish water in the depositional environment.
Genus | Species | Location | Formation & Age | Material | Notes | Images |
---|---|---|---|---|---|---|
Alisporites |
|
|
|
Pollen | Affinities with the families Peltaspermaceae, Corystospermaceae or Umkomasiaceae | |
Botryococcus |
|
|
|
Miospores | A Green Alga of the family Botryococcaceae inside Trebouxiales. | |
Callialasporites |
|
|
|
Pollen | Affinities with Araucariaceae inside Coniferae. | |
Cayeuxia |
|
|
|
Calcareous Imprints | A green algae of the Halimedaceae or Udoteaceae family. | |
Classopollis |
|
|
|
Pollen | Affinities with Cheirolepidiaceae inside Coniferae. This interval is numerically dominated by Classopollis, which usually accounts for more than 60.95% of the palynomorphs present | |
Kraeuselisporites |
|
|
|
Spores | Affinities with Selaginellaceae and probably Lycopsida. Age indicator, also present on nearby regions | |
Ischyosporites |
|
|
|
Spores | Affinities Incertade sedis in Pteridopsida or alternatively with Schizaeaceae/Anemiaceae. | |
Metapodocarpoxylon |
|
|
|
Fossilized Wood | Affinities with with Podocarpaceae inside Pinales. Probably built evergreen tropophilous forests in alluvial plains together with Agathoxylon. A genus convergently evolved with extant Dacrydium and Dacrycarpus. | |
Quadraeculina |
|
|
|
Pollen | Affinities with Podocarpaceae or Pinaceae inside Coniferophyta. | |
Tasmanites |
|
|
|
Cysts | A green algae member of Prasinophyceae. The presence of this genus indicates fresh or brackish water inputs in the marine depositional environment |
See also
- Toarcian turnover
- Toarcian formations
- Aganane Formation, Morocco
- Calcaires du Bou Dahar, Morocco
- Marne di Monte Serrone, Italy
- Podpeč Limestone, Slovenia
- El Pedregal Formation, Spain
- Mizur Formation, North Caucasus
- Sachrang Formation, Austria
- Posidonia Shale, Lagerstätte in Germany
- Irlbach Sandstone, Germany
- Ciechocinek Formation, Germany and Poland
- Krempachy Marl Formation, Poland and Slovakia
- Djupadal Formation, Central Skane
- Lava Formation, Lithuania
- Whitby Mudstone, England
- Fernie Formation, Alberta and British Columbia
- Whiteaves Formation, British Columbia
- Navajo Sandstone, Utah
- Los Molles Formation, Argentina
- Mawson Formation, Antarctica
- Kandreho Formation, Madagascar
- Kota Formation, India
- Cattamarra Coal Measures, Australia
References
- ^ Peleogeographiques, C. E. R. (2002). "Les formations lithostratigraphiques jurassiques du Haut Atlas central (Maroc) : corrélations et reconstitutions paléogéographiques". Documents des laboratoires de géologie Lyon. 156 (1): 163. Retrieved 25 January 2022.
- ^ El Bchari, F.; Ibouh, H.; Souhel, A.; Taj-Eddine, K.; Canérot, J.; Bouabdelli, M. (2001). "Cadre stratigraphique et étapes de structuration de la plate-forme liasique d'Aït Bou Guemmez (Haut-Atlas central, Maroc)". Revista de Geociências. 16 (3): 163–172. Retrieved 25 January 2022.
- ^ Krencker, F.-N.; Fantasia, A.; El Ouali, M.; Kabiri, L.; Bodin, S. (2022). "The effects of strong sediment-supply variability on the sequence stratigraphic architecture: Insights from early Toarcian carbonate factory collapses". Marine and Petroleum Geology. 136: 105469. Bibcode:2022MarPG.13605469K. doi:10.1016/j.marpetgeo.2021.105469. ISSN 0264-8172.
- ^ Hauptmann, Manfred (1990). "Untersuchungen zur Mikrofazies, Stratigraphie und Paläogeographie jurassischer Karbonat-Gesteine im Atlas-System Zentral-Marokkos". Selbstverlag Fachbereich Geowissenschaften, FU Berlin. doi:10.23689/fidgeo-6546.
- ^ Ettaki, M; Ouahhabi, B.; Dommergues, J. L.; Meister, C.; Chellaï, E. H. (2011). "Analyses biostratigraphiques dans le Lias de la bordure sud de la Téthys méditerranéenne: l'exemple de la frange méridionale du Haut-Atlas central (Maroc)". Bulletin de la Société Géologique de France. 182 (6): 521–532. doi:10.2113/gssgfbull.182.6.521. Retrieved 25 January 2022.
- ^ Jenny, J. (1985). "Carte Géologique du Maroc au 1: 100.000, feuille Azilal". Notes et Mémoires du Service Géologique du Maroc. 339 (2): 1–104. Retrieved 25 January 2022.
- ^ Jenny, J. (1988). "Carte géologique du Maroc au 1/100 000: feuille Azilal (Haut Atlas central). Mémoire explicatif". Notes et Mémoires du Service géologique. 378 (1): 1–122. Retrieved 25 January 2022.
- ^ Milhi, Abdellah (1992). Stratigraphie, Fazies und Paläogeographie des Jura am Südrand des zentralen Hohen Atlas (Marokko). Selbstverlag Fachbereich Geowissenschaften, FU Berlin. OCLC 763029903.
- ^ Ibrahim, N.; Sereno, P. C.; Zouhri, S.; Zouhri, S. (2017). "Les dinosaures du Maroc–aperçu historique et travaux récents" (PDF). Mémoires de la Société Géologique de France. 180 (4): 249–284. Retrieved 21 April 2023.
- ^ Stüder, M.; du Dresnay, R. (1980). "Deformations synsedimentaires en compression pendant le Lias superieur et le Dogger, au Tizi n'Irhil (Haut Atlas central de Midelt, Maroc)". Bull. Soc. Géol. Fr. 34 (3): 391–397. doi:10.2113/gssgfbull.S7-XXII.3.391. Retrieved 28 March 2022.
- ^ Ettaki, Mohammed; Chellaï, El Hassane (2005-07-01). "Le Toarcien inférieur du Haut Atlas de Todrha–Dadès (Maroc) : sédimentologie et lithostratigraphie". Comptes Rendus Geoscience. 337 (9): 814–823. Bibcode:2005CRGeo.337..814E. doi:10.1016/j.crte.2005.04.007. ISSN 1631-0713.
- ^ Dresnay, Renaud du (1971-01-01). "Extension et developpement des phenomenes recifaux jurassiques dans le domaine atlasique marocain, particulierement au Lias moyen". Bulletin de la Société Géologique de France. S7-XIII (1–2): 46–56. doi:10.2113/gssgfbull.s7-xiii.1-2.46. ISSN 1777-5817.
- ^ Bodin, S.; Krencker, F. N.; Kothe, T.; Hoffmann, R.; Mattioli, E.; Heimhofer, U.; Kabiri, L. (2016). "Perturbation of the carbon cycle during the late Pliensbachian–early Toarcian: New insight from high-resolution carbon isotope records in Morocco". Journal of African Earth Sciences. 116 (2): 89–104. Bibcode:2016JAfES.116...89B. doi:10.1016/j.jafrearsci.2015.12.018.
- ^ Beauchamp, W. (2004). "Superposed folding resulting from inversion of a synrift accommodation zone, Atlas Mountains, Morocco". AAPG Memoir. 82 (82): 635–646. Retrieved 25 January 2022.
- ^ Manspeizer, W. (1988). Triassic–Jurassic rifting, Continental Breakup and the Origin of the Atlantic Ocean and Passive Margins. Amsterdam: Elsevier. pp. 41–79. ISBN 978-0-444-42903-2. Retrieved 22 August 2022.
- ^ Font, E.; Youbi, N.; Fernandes, S.; El Hachimi, H.; Kratinova, Z.; Hamim, Y. (2011). "Revisiting the magnetostratigraphy of the Central Atlantic Magmatic Province from Morocco". Earth and Planetary Science Letters. 309 (4): 302–317. doi:10.1016/j.epsl.2011.07.007.
- ^ Teixell, A.; Arboleya, M. L.; Julivert, M.; Charroud, M. (2003). "Tectonic shortening and topography in the central High Atlas (Morocco)". Tectonics. 22 (5): 6–14. Bibcode:2003Tecto..22.1051T. doi:10.1029/2002TC001460. S2CID 55571408. Retrieved 25 January 2022.
- ^ Ibouh, H.; El Bchari, F.; Bouabdelli, M.; Souhel, A.; Youbi, N. (2001). "L'accident tizal-azourki haut atlas central du maroc: déformations synsedimentaires liasiques en extension et conséquences du serrage atlasique". Estudios Geológicos. 57 (2): 15–30. doi:10.3989/egeol.01571-2124. Retrieved 25 January 2022.
- ^ Duval-Arnould, A.; Schröder, S.; Charton, R.; Joussiaume, R.; Razin, P.; Redfern, J. (2021). "Early post-rift depositional systems of the Central Atlantic: Lower and Middle Jurassic of the Essaouira-Agadir Basin, Morocco" (PDF). Journal of African Earth Sciences. 178 (1): 104–164. Bibcode:2021JAfES.17804164D. doi:10.1016/j.jafrearsci.2021.104164. S2CID 233818813.
- ^ Malaval, Manon (2016-09-09). Enregistrement sédimentaire de l'activité diapirique associée à la ride du Jbel Azourki, Haut Atlas central, Maroc : impact sur la géométrie des dépôts et la distribution des faciès des systèmes carbonatés et mixtes du Jurassique inférieur (These de doctorat thesis). Bordeaux 3.
- ^ Bouchouata, A.; Canerot, J.; Souhel, A.; Almeras, Y. (1995). "Stratigraphie séquentielle et évolution géodynamique du Jurassique dans la région de Talmest-Tazoult (Haut Atlas central, Maroc)". Comptes Rendus de l'Académie des Sciences. Série 2. Sciences de la terre et des Planètes. 320 (8): 749–756.
- ^ Malaval, Manon (2016-09-09). Enregistrement sédimentaire de l'activité diapirique associée à la ride du Jbel Azourki, Haut Atlas central, Maroc : impact sur la géométrie des dépôts et la distribution des faciès des systèmes carbonatés et mixtes du Jurassique inférieur (These de doctorat thesis). Bordeaux 3.
- ^ Ettaki, M.; Ibouh, H.; Chellaï, E. H. (2007). "Événements tectono-sédimentaires au Lias-Dogger de la frange méridionale du Haut-Atlas central, Maroc". Estudios Geológicos. 63 (2): 103–125. Retrieved 2 February 2022.
- ^ Souhel, A. (1996). "Le Mésozoïque dans Haut Atlas de Beni-Mellal (Maroc). Stratigraphie, sédimentologie et évolution géodynamique" (PDF). Strata: Série 2, Mémoires. 27 (6): 1–227. Retrieved 12 May 2022.
- ^ Krencker, F. N.; Bodin, S.; Hoffmann, R.; Suan, G.; Mattioli, E.; Kabiri, L.; Immenhauser, A. (2014). "The middle Toarcian cold snap: trigger of mass extinction and carbonate factory demise". Global and Planetary Change. 117 (1): 64–78. Bibcode:2014GPC...117...64K. doi:10.1016/j.gloplacha.2014.03.008. Retrieved 25 January 2022.
- ^ POISSON, A; HADRI, M.; MILHI, A.; JULIEN, M.; ANDRIEUX, J. (1998). "The central High-Atlas (Morocco). Litho- and chrono-stratigraphic correlations during Jurassic times between Tinjdad and Tounfite. Origin of subsidence". The central High-Atlas (Morocco). Litho- and chrono-stratigraphic correlations during Jurassic times between Tinjdad and Tounfite. Origin of subsidence. 179: 237–256. ISSN 1243-4442.
- ^ Bassoullet, J. P.; Elmi, S.; Poisson, A.; Cecca, F.; Bellion, Y.; Guiraud, R.; Vrielynck, B. (1993). "Middle Toarcian". Atlas Tethys Paleoenvironmental Maps. 7 (1): 63–84.
- ^ Krencker, F. N.; Fantasia, A.; Danisch, J.; Martindale, R.; Kabiri, L.; El Ouali, M.; Bodin, S. (2020). "Two-phased Collapse of the Shallow-water Carbonate Factory during the Late Pliensbachian–Toarcian Driven by Changing Climate and Enhanced Continental Weathering in the Northwestern Gondwana Margin". Earth-Science Reviews. 208 (1): 103–254. Bibcode:2020ESRv..20803254K. doi:10.1016/j.earscirev.2020.103254. S2CID 225669068.
- ^ Krencker, François-Nicolas; Bodin, Stéphane; Suan, Guillaume; Heimhofer, Ulrich; Kabiri, Lahcen; Immenhauser, Adrian (2015). "Toarcian extreme warmth led to tropical cyclone intensification". Earth and Planetary Science Letters. 425: 120–130. Bibcode:2015E&PSL.425..120K. doi:10.1016/j.epsl.2015.06.003. ISSN 0012-821X.
- ^ Kairouani, Hajar; Abbassi, Anas; Zaghloul, Mohamed Najib; El Mourabet, Mohamed; Micheletti, Francesca; Fornelli, Annamaria; Mongelli, Giovanni; Critelli, Salvatore (2024). "The Jurassic climate change in the northwest Gondwana (External Rif, Morocco): Evidence from geochemistry and implication for paleoclimate evolution". Marine and Petroleum Geology. 163: 106762. Bibcode:2024MarPG.16306762K. doi:10.1016/j.marpetgeo.2024.106762. ISSN 0264-8172. S2CID 267956440.
- ^ Montenat, C.; Monbaron, M.; Allain, R.; Aquesbi, N.; Dejax, J.; Hernandez, J.; Taquet, P. (2005). "Stratigraphie et paléoenvironnement des dépôts volcano-détritiques à dinosauriens du Jurassique inférieur de Toundoute (Province de Ouarzazate, Haut-Atlas–Maroc)" (PDF). Eclogae Geologicae Helvetiae. 98 (2): 261–270. Bibcode:2005SwJG...98..261M. doi:10.1007/s00015-005-1161-x. S2CID 129577717. Retrieved January 25, 2022.
- ^ Lang, J.; Mahdoudi, M.L.; Pascal, A. (1990). "Sedimentation-calcrete cycles in the Mesozoic Red formations from the central High atlas (Telouet area), Morocco". Palaeogeography, Palaeoclimatology, Palaeoecology. 81 (1–2): 79–93. Bibcode:1990PPP....81...79L. doi:10.1016/0031-0182(90)90041-5. ISSN 0031-0182.
- ^ Brame, H. M. R.; Martindale, R. C.; Ettinger, N. P.; Debeljak, I.; Vasseur, R.; Lathuilière, B.; Bodin, S. (2019). "Stratigraphic distribution and paleoecological significance of Early Jurassic (Pliensbachian-Toarcian) lithiotid-coral reefal deposits from the Central High Atlas of Morocco". Palaeogeography, Palaeoclimatology, Palaeoecology. 514 (2): 813–837. Bibcode:2019PPP...514..813B. doi:10.1016/j.palaeo.2018.09.001.
- ^ Bodin, S.; Mattioli, E.; Frohlich, S.; Marshall, J.D.; Boutib, L.; Lahsini, S.; Redfern, J. (2010). "Toarcian carbon isotope shifts and nutrient changes from the Northern margin of Gondwana (High Atlas, Morocco, Jurassic): palaeoenvironmental implications" (PDF). Palaeogeogr. Palaeoclimatol. Palaeoecol. 297 (1): 377–390. Bibcode:2010PPP...297..377B. doi:10.1016/j.palaeo.2010.08.018. S2CID 128495419.
- ^ Moragas, Mar; Baqués, Vinyet; Travé, Anna; Martín-Martín, Juan Diego; Saura, Eduard; Messager, Gregoire; Hunt, David; Vergés, Jaume (2019-07-10). "Diagenetic evolution of lower Jurassic platform carbonates flanking the Tazoult salt wall (Central High Atlas, Morocco)". Basin Research. 32 (3): 546–566. doi:10.1111/bre.12382. hdl:10261/186591. ISSN 0950-091X.
- ^ Martín-Martín, J. D.; Vergés, J.; Saura, E.; Moragas, M.; Messager, G.; Baqués, V.; Razin, P.; Grélaud, C.; Malaval, M.; Joussiaume, R.; Casciello, E.; Cruz-Orosa, I.; Hunt, D. W. (2017). "Diapiric growth within an Early Jurassic rift basin: The Tazoult salt wall (central High Atlas, Morocco)". Tectonics. 36 (1): 2–32. Bibcode:2017Tecto..36....2M. doi:10.1002/2016tc004300. hdl:10261/142474. ISSN 0278-7407.
- ^ Pierre, A.; Durlet, C.; Razin, P.; Chellai, E. H. (2010). "Spatial and temporal distribution of ooids along a Jurassic carbonate ramp: Amellago outcrop transect, High-Atlas, Morocco". Geological Society, London, Special Publications. 329 (1): 65–88. Bibcode:2010GSLSP.329...65P. doi:10.1144/sp329.4. ISSN 0305-8719.
- ^ Frizon de Lamotte, D.; Zizi, M.; Missenard, Y.; Hafid, M.; Azzouzi, M.E.; Maury, R.C.; Charrière, A.; Taki, Z.; Benammi, M.; Michard, A. (2008). "The Atlas System". Continental Evolution: The Geology of Morocco. Lecture Notes in Earth Sciences. Vol. 6. Springer Berlin Heidelberg. pp. 133–202. doi:10.1007/978-3-540-77076-3_4. ISBN 978-3-540-77075-6.
- ^ Fonville, Tanner; Martindale, Rowan C.; N. Stone, Travis; Septfontaine, Michel; Bodin, Stéphane; Krencker, François-Nicolas; Kabiri, Lahcen (2024). "Early Jurassic Benthic Foraminiferal Ecology From The Central High Atlas Mountains, Morocco". PALAIOS. 39 (8): 277–299. Bibcode:2024Palai..39..277F. doi:10.2110/palo.2023.026.
- ^ El Kamar, A.; Boutakiout, M.; Elmi, S.; Sadki, D.; Ruget, C. (1998). "Foraminifères et ostracodes du Lias supérieur et du Bajocien de la Ride de Talghemt (Haut-Atlas central, Maroc)" (PDF). Bulletin de l'Institut Scientifique. 21 (1): 31–41.
- ^ Fadile, A. (2003). "Carte géologique du Maroc au 1/100 000, feuille d'Imilchil". Notes et Mémoires du Service géologique du Maroc. 397.
- ^ Löwner, Ralf (2009). "Recherches sedimentologiques et structurales à l'articulation entre Haut et Moyen Atlas et la Haute Moulouya, Maroc". Publications of the Universität Berlin. 356 (2): 2–212. doi:10.14279/DEPOSITONCE-2264. S2CID 132486463.
- ^ Khaffou, H.; Hssaida, T.; Maatouf, W.; Essafraoui, B.; El Ouali, M.; Essamoud, R.; Louaya, A.; Rachid, J.; Chakir, S.; Jaydawi, S.; Chafai, K. (2023). "Le Toarcien (sommet de la Zone à Polymorphum–Zone à Bonarelli) d'Amellagou (Haut Atlas Central, Maroc) : Palynostratigraphie et Paléoenvironnement" (PDF). Bulletin de l'Institut Scientifique, Rabat, Section Sciences de la Terre. 45 (6): 111–130.
- ^ Boudchiche, L.; Sadki, D. (2000). "Mise en évidence de la limite Pliensbachien-Toarcien par les ammonites, les foraminifères et l'interaction tectono-eustatique dans la région de Todrha-Dadès". Revenue de paléobiologie. 19: 299–317. Retrieved 8 September 2021.
- ^ Chafiki, D. (1994). "Dynamique sédimentaire à l'articulation plate forme-bassin: Exemple du Lias de la région de Beni Melal (Haut Atlas central-Maroc)". Thèse de 3ième cycle, Université Cadi Ayyad, Marrakech. 1 (1): 189p. S2CID 130402988.
- ^ Chafiki, D.; ElHariri, K.; Souhel, A.; Lachkar, N.; Sarih, S.; Dommergues, J.L.; Garcia, J.P.; Quiquerez, A. (2007). "Données lithostratigraphiques et biostratigraphiques sur le Lias dans le cadre de deux transects du Haut-Atlas central (Beni Mellal et Midelt-Errachidia, Maroc)". Africa Geoscience Review. 14 (1): 15–28. Retrieved 8 September 2021.
- ^ Rodríguez-Tovar, F. J. (2021). "Ichnology of the Toarcian Oceanic Anoxic Event: An understimated tool to assess palaeoenvironmental interpretations". Earth-Science Reviews. 216 (1): 103–119. Bibcode:2021ESRv..21603579R. doi:10.1016/j.earscirev.2021.103579. S2CID 233849558.
- ^ Vasseur, R.; Lathuilière, B.; Lazăr, I.; Martindale, R. C.; Bodin, S.; Durlet, C. (2021-12-01). "Major coral extinctions during the early Toarcian global warming event". Global and Planetary Change. 207: 103647. doi:10.1016/j.gloplacha.2021.103647. ISSN 0921-8181.
- ^ Vasseur, Raphaël (2018-12-12). Extinctions et recouvrements de coraux au cours de la crise Pliensbachien - Toarcien (phdthesis thesis) (in French). Université de Lorraine.
- ^ Benzaggagh, Mohamed; Salamon, Mariusz A.; Khaffou, Hanane; Hssaida, Touria; El Ouali, Mohamed; Essafraoui, Badre (2022). "Brachiopodes toarciens de la coupe d'Aït Athmane, Haut Atlas centro-oriental (Maroc)". Annales de Paléontologie. 108 (4): 102572. Bibcode:2022AnPal.10802572B. doi:10.1016/j.annpal.2022.102572. ISSN 0753-3969.
- ^ Alméras, Y.; Fauré, P.; Cougnon, M. (2017). "Brachiopodes toarciens du Haut-Atlas central (Maroc). Implications biostratigraphiques et paléobiogéographiques". Bulletin de la Société d'histoire naturelle de Toulouse. 153 (5): 47–66.
- ^ Lucienne, Rousselle (1973). "Le genre de Pseudogibbirhynchia : Rhynchonellacea : dans le Toarcien et l'Aalenien inferieur du Haut Atlas central et oriental". Notes du Service géologique du Maroc. 34 (254): 121–133.
- ^ Dubar, G.; Mouterde, R. (1978). "Les formations à ammonites du Lias Moyen dans Ie Haut Atlas du Midelt et du Tadla" (PDF). Notes & M. Servo Geo/. Maroc. 274 (4): 77.
- ^ Dubar, G. (1948). "Etudes paléontologiques sur le lias du Maroc: La faune domérienne du Jebel Bou-Dahar, près de Béni-Tajjite: Bivalvia" (PDF). Notes et mémoires du Service géologique du Maroc. 68 (2): 147–2011.
- ^ Jossen, Jean-Arsène (1990). "Carte géologique du Maroc 1:100 000, Zawyat Ahançal". Editions du Service Géologique du Maroc.
- ^ Wilmsen, M.; F., Neuweiler (2008). "Biosedimentology of the Early Jurassic post-extinction carbonate depositional system, central High Atlas rift basin, Morocco". Sedimentology. 54 (4): 773–807. Bibcode:2008Sedim..55..773W. doi:10.1111/j.1365-3091.2007.00921.x. S2CID 128536733. Retrieved 3 January 2022.
- ^ Posenato, R.; Crippa, G. (2023). "An insight into the systematics of Plicatostylidae (Bivalvia), with a description of Pachygervillia anguillaensis n. gen. n. sp. from the Lithiotis Facies (Lower Jurassic) of Italy". Riv. It. Paleontol. Strat. 129 (3): 551–572. Retrieved 13 November 2023.
- ^ Dubar, G. (1948). "Etudes paléontologiques sur le lias du Maroc: La faune domérienne du Jebel Bou-Dahar, près de Béni-Tajjite: Gastropoda" (PDF). Notes et mémoires du Service géologique du Maroc. 68 (2): 40–144.
- ^ Benzaggagh, Mohamed; Khaffou, Hanane; Salamon, Mariusz A.; Hssaida, Touria; Ouali, Mohamed El; Essafraoui, Badre (2022). "Ammonites du Toarcien du Haut Atlas central (Maroc)". Annales de Paléontologie. 108 (2): 102540. Bibcode:2022AnPal.10802540B. doi:10.1016/j.annpal.2022.102540. ISSN 0753-3969.
- ^ El Bchari, F.; Souhel, A. (2008-10-27). "Jurassic (uppermost Sinemurian - Aalenian) sequence stratigraphy and geodynamic evolution of the Ait Bou Guemmez area (Central High Atlas, Morocco)". Estudios Geológicos. 64 (2). doi:10.3989/egeol.08642.028. ISSN 1988-3250.
- ^ Krencker, François-Nicolas; Lindström, Sofie; Bodin, Stéphane (2019-08-29). "A major sea-level drop briefly precedes the Toarcian oceanic anoxic event: implication for Early Jurassic climate and carbon cycle". Scientific Reports. 9 (1): 12518. Bibcode:2019NatSR...912518K. doi:10.1038/s41598-019-48956-x. ISSN 2045-2322. PMC 6715628. PMID 31467345.
- ^ Jenny, J. (1988). "Carte géologique du Maroc au 1/100 000: feuille Azilal (Haut Atlas central). Mémoire explicatif". Notes et Mémoires du Service géologique. 378 (1): 1–122. Retrieved 25 January 2022.
- ^ Termier, H. (1942). "Données nouvelles sur le Jurassique rouge à Dinosauriens du Grand et du Moyen-Atlas (Maroc) [New data on the Jurassic red beds with dinosaurs from the Great and Middle Atlas (Morocco)]". Bulletin de la Société Géologique de France. 12 (6): 199–207. doi:10.2113/gssgfbull.S5-XII.4-6.199. Retrieved 25 January 2022.
- ^ Allain, R.; Tykoski, R.; Aquesbi, N.; Jalil, N. E.; Monbaron, M.; Russell, D.; Taquet, P. (2007). "An abelisauroid (Dinosauria: Theropoda) from the Early Jurassic of the High Atlas Mountains, Morocco, and the radiation of ceratosaurs" (PDF). Journal of Vertebrate Paleontology. 27 (3): 610–624. doi:10.1671/0272-4634(2007)27[610:AADTFT]2.0.CO;2. S2CID 131617581.
- ^ Ibrahim, N.; Sereno, P. C.; Zouhri, S.; Zouhri, S. (2017). "Les dinosaures du Maroc–aperçu historique et travaux récents" (PDF). Mémoires de la Société Géologique de France. 180 (4): 249–284. Retrieved 21 April 2023.
- ^ Jenny, J.; Jenny-Deshusses, C.; Le Marrec, A.; Taquet, P. (1980). "Découverte d'ossements de Dinosauriens dans le Jurassique inférieur (Toarcien) du Haut Atlas central (Maroc) [Discovery of dinosaur bones in the Lower Jurassic (Toarcian) of the central High Atlas (Morocco)]". Comptes Rendus de l'Académie des Sciences, Série D. 290 (1): 839–842. Retrieved 25 January 2022.
- ^ Taquet, P. (1985). "Two new Jurassic specimens of coelurosaurs (Dinosauria)". The beginning of birds. Eichstätt, Germany: Freunde des Jura Museums. 1 (1): 229–232.
- ^ Taquet, P. (1986). "Les découvertes récentes de dinosaures au Maroc. In Les dinosaures de la Chine à la France". Colloque international de paléontologie. 7 (2): 39–43.
- ^ Taquet, P. (2010). "The dinosaurs of Maghreb: the history of their discovery". Historical Biology. 22 (3): 88–99. Bibcode:2010HBio...22...88T. doi:10.1080/08912961003625657. S2CID 85069400.
- ^ Allain, Ronan; Bailleul, Alida (2010). "First Revision of the Theropod from the Toarcian of Wazazant (High Atlas Mountains, Morocco): The oldest Know Tetanureae?". Abstracts du 1er Congrès International sur la Paléontologie des Vertébrés du Nord de l'Afrique. 1 (1): 34.
- ^ Benson, Roger B. J. (2010). "The osteology of Magnosaurus nethercombensis (Dinosauria, Theropoda) from the Bajocian (Middle Jurassic) of the United Kingdom and a re-examination of the oldest records of tetanurans". Journal of Systematic Palaeontology. 8 (1): 131–146. Bibcode:2010JSPal...8..131B. doi:10.1080/14772011003603515. S2CID 140198723.
- ^ Mortimer, M. "RE:African Kakuru-like material". Dinosaur Mailing List. Cleveland Museum of Natural History. Retrieved 25 January 2022.
- ^ Allain, R. (2012). Histoire des dinosaures. Paris: Perrin. p. 112. ISBN 978-2081353053. Retrieved 25 January 2022.
- ^ Allain, R.; Aquesbi, N. (2008). "Anatomy and phylogenetic relationships of Tazoudasaurus naimi (Dinosauria, Sauropoda) from the late Early Jurassic of Morocco". Geodiversitas. 30 (2): 345–424. Retrieved 25 January 2022.
- ^ Termier, H. (1942). "Données nouvelles sur le Jurassique rouge à Dinosauriens du Grand et du Moyen-Atlas (Maroc) [New data on the Jurassic red beds with dinosaurs from the Great and Middle Atlas (Morocco)]". Bulletin de la Société Géologique de France. 12 (6): 199–207. doi:10.2113/gssgfbull.S5-XII.4-6.199. Retrieved 25 January 2022.
- ^ Allain, R. (2012). Histoire des dinosaures. Paris: Perrin. p. 112. ISBN 978-2081353053. Retrieved 25 January 2022.
- ^ Jenny, J.; Jenny-Deshusses, C.; Le Marrec, A.; Taquet, P. (1980). "Découverte d'ossements de Dinosauriens dans le Jurassique inférieur (Toarcien) du Haut Atlas central (Maroc) [Discovery of dinosaur bones in the Lower Jurassic (Toarcian) of the central High Atlas (Morocco)]". Comptes Rendus de l'Académie des Sciences, Série D. 290 (1): 839–842. Retrieved 25 January 2022.
- ^ Taquet, P. (2010). "The dinosaurs of Maghreb: the history of their discovery". Historical Biology. 22 (3): 88–99. Bibcode:2010HBio...22...88T. doi:10.1080/08912961003625657. S2CID 85069400.
- ^ Lévêque, P. (1961). "Contribution à l'étude géologique et hydrogéologique de l'Atlas de Demnate (Maroc)". Thèse Sciences.
- ^ Allain, Ronan; Aquesbi, Najat; Jean, Dejax; Meyer, Christian; Monbaron, Michel; Montenat, Christian; Richir, Philippe; Rochdy, Mohammed; Russell, Dale; Taquet, Philippe (2004). "A basal sauropod dinosaur from the Early Jurassic of Morocco" (PDF). Comptes Rendus Palevol. 3 (3): 199–208. Bibcode:2004CRPal...3..199A. doi:10.1016/j.crpv.2004.03.001.
- ^ Allain, R.; Aquesbi, N. (2008). "Anatomy and phylogenetic relationships of Tazoudasaurus naimi (Dinosauria, Sauropoda) from the late Early Jurassic of Morocco". Geodiversitas. 30 (2): 345–424. Retrieved 25 January 2022.
- ^ Peyer, K.; Allain, R. (2010). "A reconstruction of Tazoudasaurus naimi (Dinosauria, Sauropoda) from the late Early Jurassic of Morocco". Historical Biology. 22 (3): 134–141. Bibcode:2010HBio...22..134P. doi:10.1080/08912960903562317. S2CID 140569817. Retrieved 25 January 2022.
- ^ Gandini, Jacques. "Tazouda (Toundoute) - Les fouilles". prehistoire-du-maroc. Le Marroc Avant l´historie. Retrieved 19 July 2022.
- ^ Löwner, R. (2009). "Recherches sedimentologiques et structurales à l'articulation entre Haut et Moyen Atlas et la Haute Moulouya, Maroc" (PDF). Publications of the Universität Berlin. 356 (2): 2–212. Retrieved 20 August 2022.
- ^ Allain, Ronan; Aquesbi, Najat; Jean, Dejax; Meyer, Christian; Monbaron, Michel; Montenat, Christian; Richir, Philippe; Rochdy, Mohammed; Russell, Dale; Taquet, Philippe (2004). "A basal sauropod dinosaur from the Early Jurassic of Morocco" (PDF). Comptes Rendus Palevol. 3 (3): 199–208. Bibcode:2004CRPal...3..199A. doi:10.1016/j.crpv.2004.03.001.
- ^ Ghandour, I. M.; Fürsich, F. T. (2022). "Allogenic and autogenic controls on facies and stratigraphic architecture of the Lower Jurassic Mashabba Formation, Gebel Al-Maghara, North Sinai, Egypt". Proceedings of the Geologists' Association. 133 (1): 67–86. Bibcode:2022PrGA..133...67G. doi:10.1016/j.pgeola.2021.12.001. S2CID 245403051.
- ^ Louz, E.; Rais, J.; Barka, A. A.; Nadem, S.; Barakat, A. (2022). "Geological heritage of the Taguelft syncline (M'Goun Geopark): Inventory, assessment, and promotion for geotourism development (central high atlas, Morocco)". International Journal of Geoheritage and Parks. 10 (2): 218–239. Bibcode:2022IJGP...10..218L. doi:10.1016/j.ijgeop.2022.04.002. S2CID 248279651.
- ^ Gazeau, F. (1969). "Sur quelques structures de bois Mésozoïques du Maroc". Notes, Mém. Serv. Géol. Maroc. 210 (3): 93–120.
- ^ Philippe, M.; Bamford, M.; McLoughlin, S.; Alves, L. S. R.; Falcon-Lang, H. J.; Gnaedinger, S.; Zamuner, A. (2004). "Biogeographic analysis of Jurassic–Early Cretaceous wood assemblages from Gondwana". Review of Palaeobotany and Palynology. 129 (3): 141–173. Bibcode:2004RPaPa.129..141P. doi:10.1016/j.revpalbo.2004.01.005.
- ^ Gazeau, F. (1969). "Etude du Protophyllocladoxylon maurianum Gazeau 1967 du Jurassique du Haut Atlas". Notes et Mémoires du Service Géologique du Maroc. 210 (3): 108–113.